Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning
<p>Study area and SPOT-5 satellite image. (<b>a</b>) Location with a false-color image, (<b>b</b>) zoomed-in image of the location.</p> "> Figure 2
<p>Procedure for the developed machine learning based landslide susceptibility assessments.</p> "> Figure 3
<p>Space-robustness accuracies (<span class="html-italic">Y</span> axis) of multi-temporal landslide susceptibility assessments, considering different algorithms and proportions of landslide (L) and non-landslide (N) classes, where RF, DT, BN, Logistic, OA, UA, and PA represent random forests, decision tree, Bayes network algorithms, and logistic regression, overall accuracy, user’s accuracy, and producer’s accuracy, respectively. (<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 4
<p>Time-robustness accuracies (<span class="html-italic">Y</span> axis) for predicting the 2008 dataset, considering different algorithms and proportions of landslide (L) and non-landslide (N) classes, where RF, DT, BN, logistic, OA, UA, and PA represent random forests, decision tree, Bayes network algorithms, logistic regression, overall accuracy, user’s accuracy, and producer’s accuracy, respectively. (<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 5
<p>Counts in confusion matrices (left columns, <span class="html-italic">Y</span> axis: counts) and quantitative accuracies (right columns, <span class="html-italic">Y</span> axis: accuracies) of predicting the 2008 dataset using the RF algorithm with cost-sensitive analysis in different sample proportion cases, where TN, FN, FP, TP, AUC, L, and N indicate true negative, false negative, false positive, true positive, and area under ROC curve, landslide class, and non-landslide class, respectively. (<b>a</b>), (<b>b</b>) L:N = 1:1; (<b>c</b>), (<b>d</b>) L:N = 1:4; (<b>e</b>), (<b>f</b>) L:N = 1:7; (<b>g</b>), (<b>h</b>) L:N = 1:10.</p> "> Figure 5 Cont.
<p>Counts in confusion matrices (left columns, <span class="html-italic">Y</span> axis: counts) and quantitative accuracies (right columns, <span class="html-italic">Y</span> axis: accuracies) of predicting the 2008 dataset using the RF algorithm with cost-sensitive analysis in different sample proportion cases, where TN, FN, FP, TP, AUC, L, and N indicate true negative, false negative, false positive, true positive, and area under ROC curve, landslide class, and non-landslide class, respectively. (<b>a</b>), (<b>b</b>) L:N = 1:1; (<b>c</b>), (<b>d</b>) L:N = 1:4; (<b>e</b>), (<b>f</b>) L:N = 1:7; (<b>g</b>), (<b>h</b>) L:N = 1:10.</p> "> Figure 6
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of 2008 dataset prediction obtained using RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN,OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively. (<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 6 Cont.
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of 2008 dataset prediction obtained using RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN,OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively. (<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 7
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of Typhoon Fung-wong prediction using RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively. (<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 7 Cont.
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of Typhoon Fung-wong prediction using RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively. (<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 8
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of Typhoon Sinlaku prediction using the RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively.(<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 8 Cont.
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of Typhoon Sinlaku prediction using the RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively.(<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 9
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of Typhoon Jangmi prediction using the RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively.(<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 9 Cont.
<p>Comparison of the representative results (<span class="html-italic">Y</span> axis: accuracies) of Typhoon Jangmi prediction using the RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class, respectively.(<b>a</b>) L:N = 1:1; (<b>b</b>) L:N = 1:4; (<b>c</b>) L:N = 1:7; (<b>d</b>) L:N = 1:10.</p> "> Figure 10
<p>The multi-temporal landslide susceptibility maps generated (<b>a</b>) without cost analysis in the 1:1 case,(<b>b</b>) with cost = 50 in the 1:1 case, (<b>c</b>) without cost analysis in the 1:4 case, (<b>d</b>) with cost = 500 in the 1:4 case, (<b>e</b>) without cost analysis in the 1:7 case, (<b>f</b>) with cost = 1000 in the 1:7 case, (<b>g</b>) without cost analysis in the 1:10 case, and (<b>h</b>) with cost = 3000 in the 1:10 case.</p> "> Figure 10 Cont.
<p>The multi-temporal landslide susceptibility maps generated (<b>a</b>) without cost analysis in the 1:1 case,(<b>b</b>) with cost = 50 in the 1:1 case, (<b>c</b>) without cost analysis in the 1:4 case, (<b>d</b>) with cost = 500 in the 1:4 case, (<b>e</b>) without cost analysis in the 1:7 case, (<b>f</b>) with cost = 1000 in the 1:7 case, (<b>g</b>) without cost analysis in the 1:10 case, and (<b>h</b>) with cost = 3000 in the 1:10 case.</p> "> Figure 11
<p>Space-robustness accuracies (<span class="html-italic">Y</span> axis) of event-based landslide susceptibility assessments, considering different algorithms and proportions of landslide and non-landslide classes, where RF, DT, BN, and logistic indicate random forests, decision tree, Bayes network algorithm, and logistic algorithm, respectively. (<b>a</b>) Non-landslide detections for Typhoon Aere; (<b>b</b>) Landslide detections for Typhoon Aere; (<b>c</b>) Non-landslide detections for Typhoon Matsa; (<b>d</b>) Landslide detections for Typhoon Matsa; (<b>e</b>) Non-landslide detections for Typhoon Sinlaku; (<b>f</b>) Landslide detections for Typhoon Sinlaku.</p> "> Figure 11 Cont.
<p>Space-robustness accuracies (<span class="html-italic">Y</span> axis) of event-based landslide susceptibility assessments, considering different algorithms and proportions of landslide and non-landslide classes, where RF, DT, BN, and logistic indicate random forests, decision tree, Bayes network algorithm, and logistic algorithm, respectively. (<b>a</b>) Non-landslide detections for Typhoon Aere; (<b>b</b>) Landslide detections for Typhoon Aere; (<b>c</b>) Non-landslide detections for Typhoon Matsa; (<b>d</b>) Landslide detections for Typhoon Matsa; (<b>e</b>) Non-landslide detections for Typhoon Sinlaku; (<b>f</b>) Landslide detections for Typhoon Sinlaku.</p> "> Figure 12
<p>The landslide susceptibility maps generated for Typhoon Sinlaku (<b>a</b>) with cost = 50 in the 1:1 case, (<b>b</b>) with cost = 300 in the 1:4 case, (<b>c</b>) with cost = 500 in the 1:7 case, and (<b>d</b>) with cost = 700 in the 1:10 case.</p> "> Figure 12 Cont.
<p>The landslide susceptibility maps generated for Typhoon Sinlaku (<b>a</b>) with cost = 50 in the 1:1 case, (<b>b</b>) with cost = 300 in the 1:4 case, (<b>c</b>) with cost = 500 in the 1:7 case, and (<b>d</b>) with cost = 700 in the 1:10 case.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data Preprocessing
2.2. Developed Machine Learning Based Model
2.3. Verification and Mapping
3. Results
3.1. Multitemporal Landslide Susceptibility Assessments
3.1.1. Space-robustness Verification
3.1.2. Time-Robustness Verification with Multiple-Event Samples
3.1.3. Time-robustness Verification with Single-event Samples
3.1.4. Susceptibility Mapping
3.2. Event-Based Landslide Susceptibility Assessments
3.2.1. Space-Robustness Verification
3.2.2. Time-robustness Verification
3.2.3. Susceptibility Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fell, R.; Hartford, D. Landslide risk management. In Landslide Risk Assessment; Cruden, D., Fell, R., Eds.; Balkema: Rotterdam, The Netherlands, 1997; pp. 51–109. [Google Scholar]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Brabb, E.E. Innovative approaches to landslide hazard mapping. In Proceedings of the 4th International Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984. [Google Scholar]
- Rossi, M.; Guzzetti, F.; Reichenbach, P.; Mondini, A.C.; Peruccacci, S. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 2010, 114, 129–142. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide Hazard and Risk Assessment. Ph.D. Dissertation, University of Bonn, Bonn, Germany, 2005. [Google Scholar]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naïve Bayes models. Math. Probl. Eng. 2012, 2012, 974638. [Google Scholar]
- Wang, X.; Niu, R. Spatial forecast of landslides in Three Gorges based on spatial data mining. Sensors 2009, 9, 2035–2061. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.; Lai, J.-S.; Chen, W.W.; Lin, T.-H. Analysis of topographic and vegetative factors with data mining for landslide verification. Ecol. Eng. 2013, 61, 669–677. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng. Geol. 2015, 192, 101–112. [Google Scholar] [CrossRef]
- Nourani, V.; Pradhan, B.; Ghaffari, H.; Sharifi, S.S. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Nat. Hazards 2014, 71, 523–547. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Aryal, J.; Pradhan, B. A Novel rule-based approach in mapping landslide susceptibility. Sensors 2019, 19, 2274. [Google Scholar] [CrossRef]
- Wan, S. Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environ. Earth Sci. 2013, 68, 1349–1366. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 2012, 96, 28–40. [Google Scholar]
- Zhu, A.-X.; Wang, R.; Qiao, J.; Qin, C.-Z.; Chen, Y.; Liu, J.; Du, F.; Lin, Y.; Zhu, T. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 2014, 214, 128–138. [Google Scholar] [CrossRef]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS supported landslide susceptibility modeling at regional scale: An expert-based fuzzy weighting method. ISPRS Int. J. Geo-Inf. 2014, 3, 523–539. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 2012, 171–172, 12–29. [Google Scholar]
- Xu, K.; Guo, Q.; Li, Z.; Xiao, J.; Qin, Y.; Chen, D.; Kong, C. Landslide susceptibility evaluation based on BPNN and GIS: A case of Guojiaba in the Three Gorges Reservoir Area. Int. J. Geogr. Inf. Sci. 2015, 29, 1111–1124. [Google Scholar] [CrossRef]
- Merghadi, A.; Abderrahmane, B.; Bui, D.T. Landslide susceptibility assessment at Mila Basin (Algeria): Acomparative assessment of prediction capability of advanced machine learning methods. ISPRS Int. J. Geo-Inf. 2018, 7, 268. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, J.; Zhao, S.; Wang, L.; Liu, J.; Guo, J. Comparative assessment of three nonlinear approaches for landslide susceptibility mapping in a coal mine area. ISPRS Int. J. Geo-Inf. 2017, 6, 228. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Peng, G. Landslide susceptibility assessment using integrated deep learning algorithm along the China-Nepal highway. Sensors 2018, 18, 4436. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput. Geosci. 2012, 45, 199–211. [Google Scholar]
- Pradhan, B.; Sezer, E.A.; Gokceoglu, C.; Buchroithner, M.F. Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans. Geosci. Remote Sens. 2010, 48, 4164–4177. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Chan, J.C.; Beckers, P.; Spanhove, T.; Borre, J.V. An evaluation of ensemble classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral (CHRIS/Proba) imagery. Int. J. Appl. Earth Obs. Geoinform. 2012, 18, 13–22. [Google Scholar] [CrossRef]
- Shao, Y.; Campbell, J.B.; Taff, G.N.; Zheng, B. An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data. Int. J. Appl. Earth Obs. Geoinform. 2015, 38, 78–87. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Mutanga, O.; Adam, E.; Ismail, R. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 45–59. [Google Scholar] [CrossRef]
- Shang, X.; Chisholm, L.A. Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2481–2489. [Google Scholar] [CrossRef]
- Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabeling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155–168. [Google Scholar] [CrossRef]
- Heckmann, T.; Gegg, K.; Gegg, A.; Becht, M. Sample size matters: Investigating the effect of sample size on a logistic regression susceptibility model for debris flows. Nat. Hazards Earth Syst. Sci. 2014, 14, 259–278. [Google Scholar] [CrossRef]
- Berry, M.J.; Linoff, G.S. Mastering Data Mining: The Art and Science of Customer Relationship Management; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Aksoy, B.; Ercanoglu, M. Landslide identification and classification by object-based image analysis and fuzzy logic: An example from the Azdavay region (Kastamonu, Turkey). Comput. Geosci. 2012, 38, 87–98. [Google Scholar] [CrossRef]
- Dou, J.; Chang, K.-T.; Chen, S.; Yunus, A.P.; Liu, J.-K.; Xia, H.; Zhu, Z. Automatic case-based reasoning approach for landslide detection: Integration of object-oriented image analysis and a genetic algorithm. Remote Sens. 2015, 7, 4318. [Google Scholar] [CrossRef]
- Mondini, A.C.; Chang, K.-T. Combing spectral and geoenvironmental information for probabilistic event landslide mapping. Geomorphology 2014, 213, 183–189. [Google Scholar] [CrossRef]
- Mondini, A.C.; Chang, K.-T.; Yin, H.-Y. Combing multiple change detection indices for mapping landslides triggered by typhoons. Geomorphology 2011, 134, 440–451. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Reichenbach, P.; Rossi, M.; Cardinali, M.; Ardizzone, F. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens. Environ. 2011, 115, 1743–1757. [Google Scholar] [CrossRef]
- Mondini, A.C.; Marchesini, I.; Rossi, M.; Chang, K.-T.; Pasquariello, G.; Guzzetti, F. Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data. Geomorphology 2013, 201, 135–147. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Wang, X.; Niu, R. Landslide intelligent prediction using object-oriented method. Soil Dyn. Earthq. Eng. 2010, 30, 1478–1486. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-T.; Huang, C.-C.; Lee, J.-F.; Pan, K.-L.; Lin, M.-L.; Dong, J.J. Statistical approach to storm event-induced landslide susceptibility. Nat. Hazards Earth Syst. Sci. 2008, 8, 941–960. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Xu, W.; Wang, G. GIS-based landslide hazard assessment: An overview. Prog. Phys. Geog. 2005, 29, 548–567. [Google Scholar]
- Chang, K.-T.; Chiang, S.-H.; Chen, Y.-C.; Mondini, A.C. Modeling the spatial occurrence of shallow landslides triggered by typhoons. Geomorphology 2014, 208, 137–148. [Google Scholar] [CrossRef]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides; U.S. Geological Survey Circular: Reston, VA, USA, 2008; Volume 1325.
- Tsai, F.; Chen, L.C. Long-term landcover monitoring and disaster assessment in the Shiman reservoir watershed using satellite images. In Proceedings of the 13th CeRES International Symposium on Remote Sensing, Chiba, Japan, 29–30 October 2007. [Google Scholar]
- Deng, Y.C.; Tsai, F.; Hwang, J.H. Landslide characteristics in the area of Xiaolin Village during Morakot typhoon. Arab. J. Geosci. 2016, 9, 332. [Google Scholar] [CrossRef]
- Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens. Environ. 2005, 98, 63–79. [Google Scholar] [CrossRef]
- Schott, J.R.; Salvaggio, C.; Volchok, W.J. Radiometric scene normalization using pseudo invariant features. Remote Sens. Environ. 1988, 26, 1–16. [Google Scholar] [CrossRef]
- Minnaert, M. The reciprocity principle in lunar photometry. Astrophys. J. 1941, 93, 403–410. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Desai, A.; Jadav, P.M. An empirical evaluation of Adaboost extensions for cost-sensitive classification. Int. J. Comput. Appl. 2012, 44, 34–41. [Google Scholar]
- Tsai, F.; Lai, J.-S.; Lu, Y.-H. Land-cover classification of full-waveform LiDAR point cloud with volumetric texture measures. Terr. Atmos. Ocean. Sci. 2016, 27, 549–563. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2011. [Google Scholar]
- Elkan, C. The foundations of cost-sensitive learning. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, Seattle, WA, USA, 4–10 August 2001. [Google Scholar]
- Gigović, L.; Drobnjak, S.; Pamučar, D. The application of the hybrid GIS spatial multi-criteria decision analysis best–worst methodology for landslide susceptibility mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 79. [Google Scholar] [CrossRef]
- Shirzadi, A.; Soliamani, K.; Habibnejhad, M.; Kavian, A.; Chapi, K.; Shahabi, H.; Chen, W.; Khosravi, K.; Pham, B.T.; Pradhan, B.; et al. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors 2018, 18, 3777. [Google Scholar] [CrossRef]
- He, H.; Hu, D.; Sun, Q.; Zhu, L.; Liu, Y. A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of southern Anhui, China. ISPRS Int. J. Geo-Inf. 2019, 8, 266. [Google Scholar] [CrossRef]
- Di, B.; Stamatopoulos, C.A.; Dandoulaki, M.; Stavrogiannopoulou, E.; Zhang, M.; Bampina, P. A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake. Nat. Hazards 2017, 85, 903–992. [Google Scholar] [CrossRef]
- Sorbino, G.; Sica, C.; Cascini, L. Susceptibility analysis of shallow landslides source areas using physically based models. Nat. Hazards 2010, 53, 313–332. [Google Scholar] [CrossRef]
Typhoon | Date | Accumulated Precipitation (mm) | No. of Landslide Samples |
---|---|---|---|
Mindulle | 2004/7/1–7/2 | 57–188 | 184 |
Aere | 2004/8/25–8/26 | 85–1100 | 32,020 |
Nock-ten | 2004/10/25 | 119–399 | <50 |
Haitang | 2005/7/18–7/20 | 278–799 | 100 |
Matsa | 2005/8/4–8/5 | 188–636 | 2,112 |
Talim | 2005/9/1 | 135–535 | 201 |
Bilis | 2006/7/13–7/15 | 44–151 | <50 |
Kaemi | 2006/7/24 | 6–96 | 109 |
Bopha | 2006/8/9 | 9–108 | <50 |
Sepat | 2007/8/16–8/19 | 38–340 | 331 |
Wipha | 2007/9/18–9/19 | 104–360 | 309 |
Korsa | 2007/10/6–10/7 | 265–512 | 430 |
Kalmaegi | 2008/7/17–7/18 | 265–512 | 83 |
Fung-wong | 2008/7/28–7/19 | 65–251 | 330 |
Sinlaku | 2008/9/14–9/15 | 235–515 | 943 |
Jangmi | 2008/9/28–9/29 | 258–473 | 308 |
Original Data | Original Resolution/Scale | Used Factor (Raster Format) |
---|---|---|
DEM | 20 m × 20 m | Aspect |
Curvature | ||
Elevation | ||
Slope | ||
Geology map | 1/50,000 | Geology |
Land-cover map | 1/5000 | Land-cover |
Soil map | 1/25,000 | Soil |
Fault map | 1/50,000 | Distance to fault |
Rainfall-gage | Accumulative hourly rainfall maps (IDW) | |
Accumulative hourly rainfall maps (Kriging) | ||
Maximum hourly rainfall maps (IDW) | ||
River map | 1/5000 | Distance to river |
Road map | 1/5000 | Distance to road |
Satellite imagery | 10 m × 10 m | NDVI |
L:N | Cost | Low | Medium to Low | Medium to High | High | Very High |
---|---|---|---|---|---|---|
1:1 | 1 | 42.0 | 28.5 | 21.0 | 8.2 | 0.3 |
50 | 2.9 | 6.7 | 26.9 | 26.7 | 36.8 | |
1:4 | 1 | 71.4 | 15.6 | 11.6 | 1.4 | 0.0 |
500 | 2.7 | 7.8 | 27.7 | 26.5 | 35.3 | |
1:7 | 1 | 73.1 | 18.9 | 7.1 | 0.9 | 0 |
1000 | 3.6 | 14.5 | 25.4 | 26.3 | 30.2 | |
1:10 | 1 | 79.1 | 16.2 | 4.7 | 0.0 | 0.0 |
3000 | 2 | 2.8 | 12.5 | 32.6 | 50.1 |
Typhoon | L:N | Cost | Low | Medium to Low | Medium to High | High | Very High |
---|---|---|---|---|---|---|---|
Fung-wong | 1:1 | 10 | 0 | 9.1 | 54.2 | 29.1 | 7.6 |
1:4 | 500 | 0 | 3.6 | 14.2 | 39.4 | 42.8 | |
1:7 | 500 | 0 | 7.2 | 56.4 | 15.8 | 20.6 | |
1:10 | 1000 | 0 | 10.9 | 34.2 | 33.9 | 21 | |
Sinlaku | 1:1 | 50 | 5.2 | 8.8 | 33.1 | 20 | 32.9 |
1:4 | 500 | 4.9 | 8.1 | 30.5 | 22.4 | 34.1 | |
1:7 | 3000 | 3.5 | 5.1 | 14.5 | 34.4 | 42.5 | |
1:10 | 3000 | 5.7 | 5.4 | 32.4 | 22.8 | 33.7 | |
Jangmi | 1:1 | 50 | 0 | 9.1 | 23.4 | 27.6 | 39.9 |
1:4 | 500 | 0 | 13 | 24.7 | 25 | 37.3 | |
1:7 | 3000 | 0 | 0 | 18.5 | 22.7 | 58.8 | |
1:10 | 3000 | 0 | 8.7 | 28.9 | 23.4 | 39 |
P | L:N | T | Method. | Cost | OA (%) | AUC | UA (N) | PA (N) | UA (L) | PA (L) |
---|---|---|---|---|---|---|---|---|---|---|
Matsa | 1:1 | Sinlaku | RF | 50 | 73.48 | 0.83 | 0.72 | 0.77 | 0.75 | 0.70 |
1:4 | BN | 500 | 0.82 | 0.98 | 0.71 | 0.45 | 0.95 | |||
1:7 | DT | 50 | 0.78 | 0.95 | 0.94 | 0.59 | 0.63 | |||
1:10 | DT | 100 | 0.78 | 0.96 | 0.93 | 0.48 | 0.65 | |||
Sinlaku | 1:1 | Aere | Logistic | 5 | 76.62 | 0.8 | 0.78 | 0.74 | 0.75 | 0.79 |
1:4 | RF | 1000 | 0.86 | 0.90 | 0.86 | 0.53 | 0.63 | |||
1:7 | RF | 3000 | 0.86 | 0.95 | 0.88 | 0.43 | 0.65 | |||
1:10 | RF | 5000 | 0.84 | 0.96 | 0.89 | 0.36 | 0.60 | |||
Aere | 1:1 | Sinlaku | RF | 50 | 83.43 | 0.9 | 0.8 | 0.89 | 0.88 | 0.78 |
1:4 | RF | 300 | 0.89 | 0.92 | 0.95 | 0.78 | 0.68 | |||
1:7 | Logistic | 70000 | 0.92 | 0.96 | 0.96 | 0.74 | 0.73 | |||
1:10 | RF | 700 | 0.89 | 0.97 | 0.96 | 0.65 | 0.66 |
P | T | L:N | Cost | Low | Medium to Low | Medium to High | High | Very High |
---|---|---|---|---|---|---|---|---|
Matsa | Sinlaku | 1:1 | 50 | 0 | 0.7 | 6.8 | 83.1 | 9.4 |
1:4 | 700 | 0 | 1.7 | 34.6 | 60.1 | 3.6 | ||
1:7 | 3000 | 0 | 0.2 | 28.1 | 50 | 21.7 | ||
1:10 | 3000 | 0 | 8.2 | 64.5 | 20.8 | 6.5 | ||
Sinlaku | Aere | 1:1 | 100 | 5.1 | 13.9 | 29 | 27 | 25.1 |
1:4 | 1000 | 4.7 | 17.6 | 27.6 | 25.1 | 25 | ||
1:7 | 3000 | 5.7 | 17.3 | 22.7 | 25 | 29.3 | ||
1:10 | 5000 | 8.1 | 20.3 | 28.7 | 19.3 | 23.6 | ||
Aere | Sinlaku | 1:1 | 50 | 1.8 | 11.4 | 23.8 | 62.5 | 0.5 |
1:4 | 300 | 6 | 19.3 | 26.5 | 48.2 | 0 | ||
1:7 | 500 | 10.2 | 14.4 | 17.9 | 56.4 | 1.1 | ||
1:10 | 700 | 16.5 | 8.8 | 21.4 | 52.7 | 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.-S.; Tsai, F. Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning. Sensors 2019, 19, 3717. https://doi.org/10.3390/s19173717
Lai J-S, Tsai F. Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning. Sensors. 2019; 19(17):3717. https://doi.org/10.3390/s19173717
Chicago/Turabian StyleLai, Jhe-Syuan, and Fuan Tsai. 2019. "Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning" Sensors 19, no. 17: 3717. https://doi.org/10.3390/s19173717
APA StyleLai, J. -S., & Tsai, F. (2019). Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning. Sensors, 19(17), 3717. https://doi.org/10.3390/s19173717