An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study
<p>The Wize Sniffer (WS). On the top, left: the gas sensors in the gas sampling chamber are shown. On the top, right: WS external configuration (WS dimensions: 30 cm × 30 cm × 14 cm). Others: the WS while performing a breath test.</p> "> Figure 2
<p>Box plot representing the median values, first quartile and 3rd quartile of TGS2444 maximum outputs relative to healthy controls (HC), non cirrhotic-chronic liver disease (NC-CLD), cirrhotics (CIRRH) and cirrhotics with a recent episode of Hepathic Hencephalopathy (CHE).</p> "> Figure 3
<p>Box plot representing the median values, first quartile and 3rd quartile of TGS2602 maximum outputs relative to HC, NC-CLD, CIRRH and CHE.</p> "> Figure 4
<p>Comparison of radar plot profiles relative to HC, NC-CLD, CIRRH and CHE. Radar plots showed a concordant rise in value for TGS2444 and TGS2602 (sensitive to ammonia) maximum output, from HC to CHE subjects. However, a change in the whole sensors’ outputs pattern can be observed.</p> "> Figure 5
<p>Most significant correlations calculated between breath data (TGS2444 and TGS2602 outputs) and liver function clinical parameters. The scatter plots visually show the relationship between (<b>a</b>) subjects spleen dimensions and ammonia sensors maximum values; (<b>b</b>) prothrombine time (PT) and ammonia sensors outputs (maximum value and maximum slope); (<b>c</b>) bilirubin and ammonia sensors maximum values.</p> "> Figure 6
<p>Comparison of receiver operating characteristic (ROC) curves for TGS2444 and TGS2602 output features (maximum output and first derivative) in the total evaluated population (first row, HC versus subjects with liver disease LD), in the population of patients with liver impairment (second row, NC-CLD patients versus CIRRH), in the population of cirrhotic patients (third row, CIRRH versus CHE).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Wize Sniffer
2.2. Data Pre-Processing
2.3. Experimental Tests
3. Results
4. Discussion and Conclusions
- the used MOS gas sensors gave good results in detecting breath ammonia, also at <ppm levels;
- the median values of the features extracted from sensor signals increased with increasing liver impairment;
- significant correlations were found between gas sensor features and a set of standard liver function parameters (e.g., PT, bilirubin, spleen dimensions);
- cut-off values were found in gas sensor features which permitted to discriminate between the several group of individuals (from HC to CHE subjects).
- the design of a new gas sampling box, with a more suitable geometrical shape to ensure all of the gas sensors receive the same amount of air flow during each breath test [71];
- the use of new materials for the gas sampling box, e.g., organic tehermoplastic polymers such as PEEK (Polyether ether ketone) [72], to be sure to avoid any absorption phenomenon of volatile molecules on the internal surface of the gas sampling box itself;
- a system based on a solenoide valve to automatically sample the portion of exhaled volume of interest;
- the integration of a controller board with higher computing power.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile Butadiene Styrene |
AUC-ROC | Area Under the Curve-Receiver Operating Characteristic |
CHE | Cirrhotics with recent episode of HE |
CIRRH | Cirrhotics |
COPD | Chronic obstructive pulmonary disease |
CT | Computer tomography |
DST | Digit-simbol test |
GC-MS | Gas chromatography-mass spectrometry |
HC | Healthy controls |
HE | Hepathic Hencephalopathy |
HME | Heat and moisture exchanger |
INR | International normalized ratio |
LD | Liver disease |
MELD | Model for end-stage liver disease |
MHE | Minimal HE |
MOS | Metal oxide semiconductor |
NC-CLD | Non cirrhotic-chronic liver disease |
OTFTs | Organic thin-film transistor |
PALS | Photoacustic Laser Spectrometry |
ppb | part-per-billions |
ppm | part-per-millions |
ppt | part-per-trillions |
PT | Prothrombine time |
PTR-MS | Protron transfer reaction time-of-flight mass spectrometry |
PVC | Polyvinyl chloride |
SIFT-MS | Selected ion flow tube-mass spectrometry |
TMT-A | Trail-making-test A |
TMT-B | Trail-making-test B |
US | Ultrasound |
VOC | Volatile organic compound |
WHO | World Health Organization |
WS | Wize sniffer |
References
- Häussinger, D. Physiological Functions of the Liver. In Comprehensive Human Physiology; Greger, R., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1369–1391. [Google Scholar]
- Blachier, M.; Leleu, H.; Peck-Radosavljevic, M.; Valla, D.; Roudot-Thoraval, F. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 2013, 58, 593–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, S.J. Hepatic Encephalopathy. Med. Clin. N. Am. 2008, 92, 795–812. [Google Scholar] [CrossRef] [PubMed]
- Ferenci, P.; Lockwood, A.; Mullen, K.; Tarter, R.; Weissenborn, K.; Blei, A.T. Hepatic encephalopathy—Definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna. Hepatology 2002, 35, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Patidar, K.R.; Bajaj, J.S. Covert and overt hepatic encephalopathy: Diagnosis and management. Clin. Gastroentrol. Hepatol. 2015, 13, 2048–2061. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Cordoba, J.; Mullen, K.D.; Amodio, P.; Shawcross, D.L.; Butterworth, R.F.; Morgan, M.Y. Review article: The design of clinical trials in hepatic encephalopathy—An international society for hepatic encephalopathy and nitrogen metabolism (ishen) consensus statement. Aliment. Pharmacol. Ther. 2011, 33, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; Rimola, A.; Ventura, P.J.; Navasa, M.; Cirera, I.; Reggiardo, V. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J. Hepatol. 1999, 30, 890–895. [Google Scholar] [CrossRef]
- Riggio, O.; Amodio, P.; Farcomeni, A.; Merli, M.; Nardelli, S.; Pasquale, C.; Pentassuglio, I.; Gioia, S.; Onori, E.; Piazza, N.; et al. A model for predicting development of overt hepatic encephalopathy in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2015, 13, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Wade, J.B.; Sanyal, A.J. Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology 2009, 50, 2014–2021. [Google Scholar] [CrossRef]
- Stahl, J. Studies of the blood ammonia in liver disease. Its diagnosis, prognosis and therapeutic significance. Ann. Int. Med. 1963, 58, 1–24. [Google Scholar] [CrossRef]
- Weissenborn, K.; Ennen, J.C.; Schomerus, H.; Rückert, N.; Hecker, H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol. 2001, 34, 768–773. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Trail Making Test, Part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef]
- Blanco Vela, C.; Bosques Padilla, F. Determination of ammonia concentrations in cirrhosis patients—Still confusing after all there years? Ann. Hepatol. 2011, 10, 60–65. [Google Scholar] [CrossRef]
- DuBois, S.; Eng, S.; Bhattacharya, R.; Rulyak, S.; Hubbard, T.; Putnam, D.; Kearney, D.J. Breath Ammonia Testing for Diagnosis of Hepatic Encephalopathy. Dig. Dis. Sci. 2005, 50, 1780–1784. [Google Scholar] [CrossRef] [PubMed]
- Brannelly, N.; Hamilton-Shield, J.; Killard, A. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit. Rev. Anal. Chem. 2016, 46, 490–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimamoto, C.; Hirata, I.; Katsu, K. Breath and blood ammonia in liver cirrhosis. Hepatogastroenterology 2000, 47, 443–445. [Google Scholar] [PubMed]
- Adrover, R.; Cocozzella, D.; Ridruejo, E.; Garca, A.; Rome, J.; Podest, J. Breath-Ammonia Testing of Healthy Subjects and Patients with Cirrhosis. Dig. Dis. Sci. 2012, 57, 189–195. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G.H. Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A. Recent progress in the design and clinical development of electronic-nose technologies. Nanobiosens. Dis. Diagn. 2016, 5, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef]
- Wilson, A.D. Application of electronic-nose technologies and VOC biomarkers for the non invasive early diagnosis of gastrointestinal diseases. Sensors 2018, 18, 2613. [Google Scholar] [CrossRef] [PubMed]
- Westenbrink, E.; Arasaradnam, R.P.; O’Connell, N.; Bailey, C.; Nwokolo, C.; Bardhan, K.D.; Covington, J.A. Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens. Bioelectron. 2015, 67, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Developing Electronic-nose Technologies for Clinical Practice. J. Med. Surg. Pathol. 2018, 3, 169–171. [Google Scholar] [CrossRef]
- Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88. [Google Scholar] [CrossRef]
- Risby, T.H.; Solga, S.F. Current status of clinical breath analysis. Appl. Phys. B 2006, 85, 421–426. [Google Scholar] [CrossRef]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of lung cancer by sensor array analysis of exhaled breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- De Meij, T.G.; Larbi, I.B.; van der Schee, M.P.; Lentferink, Y.E.; Paff, T.; Terhaar sive Droste, J.S.; Mulder, C.J.; van Bodegraven, A.A.; de Boer, N.K. Electronic nose can discriminate colorectal cancer and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study. Int. J. Cancer 2014, 134, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Shuster, G.; Gallimidi, Z.; Reiss, A.H.; Dovgolevsky, E.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Engel, A.; Shiban, A.; Tisch, U.; et al. Classification of breast cancer precursors through exhaled breath. Breast Cancer Res. Treat. 2011, 126, 791–796. [Google Scholar] [CrossRef]
- Roine, A.; Veskimäe, E.; Tuokko, A.; Kumpulainen, P.; Koskimäki, J.; Keinänen, T.A.; Häkkinen, M.R.; Vepsäläinen, J.; Paavonen, T.; Lekkala, J.; et al. Detection of prostate cancer by an electronic nose: A proof of principle study. J. Urol. 2014, 192, 230–235. [Google Scholar] [CrossRef]
- Yusuf, N.; Zakaria, A.; Omar, M.I.; Shakaff, A.Y.M.; Masnan, M.J.; Kamarudin, L.M.; Rahim, N.A.; Zakaria, N.Z.I.; Abdullah, A.A.; Othman, A.; et al. In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology. BMC Bioinform. 2015, 16, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Mores, N.; Trové, A.; Mondino, C.; Barnes, P.J. The electronic nose in respiratory medicine. Respiration 2013, 85, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Sibila, O.; Garcia-Bellmunt, L.; Giner, J.; Merino, J.L.; Suarez-Cuartin, G.; Torrego, A.; Solanes, I.; Castillo, D.; Valera, J.L.; Cosio, B.G.; et al. Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease. Respir. Med. 2014, 108, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Le Maout, P.; Laquintinie, P.S.; Lahuec, C.; Seguin, F.; Wojkiewicz, J.L.; Redon, N.; Dupont, L. A low cost, handheld E-nose for renal diseases early diagnosis. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2817–2820. [Google Scholar]
- Lin, Y.J.; Guo, H.R.; Chang, Y.H.; Kao, M.T.; Wang, H.H.; Hong, R.I. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem. 2001, 76, 177–180. [Google Scholar] [CrossRef]
- Behera, B.; Joshi, R.; Anil Vishnu, G.K.; Bhalerao, S.; Pandya, H.J. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath Res. 2019, 13, 024001. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.; Linder, R.; Perriello, G.; di Daniele, N.; Pöppl, S.J.; de Lorenzo, A. Predicting Type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr. Metab. 2002, 15, 215–221. [Google Scholar] [PubMed]
- Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J.; et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 2013, 8, 43–56. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, D.; Li, N.; Zhang, L.; Yang, J. A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng. 2010, 57, 2753–2763. [Google Scholar]
- Lourenco, C.; Turner, C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites 2014, 4, 465–498. [Google Scholar] [CrossRef]
- Van Den Velde, S.; Nevens, S.; van Hee, P.; van Steenberghe, D.; Quirynen, M. GC-MS analysis of breath odour compounds in liver patients. J. Chromatogr. B Anal. Tech. Biomed. Life Sci. 2008, 875, 344–348. [Google Scholar] [CrossRef]
- Hibbard, T.; Killard, A. Breath ammonia analysis: Clinical application and measurement. Crit. Rev. Anal. Chem. 2011, 41, 21–35. [Google Scholar] [CrossRef]
- Smith, D.; Wang, T.; Pysanenko, A.; Španěl, P. A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Commun. Mass Spectrom. 2008, 22, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Morisco, F.; Aprea, E.; Lembo, V.; Fogliano, V.; Vitaglione, P.; Mazzone, G.; Cappellin, L.; Gasperi, F.; Masone, S.; de Palma, G.D.; et al. Rapid “breath-print” of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study. PLoS ONE 2013, 8, e59658. [Google Scholar] [CrossRef] [PubMed]
- Timmer, B.; van Delft, M.; Koelmans, W.; Olthuis, W.; van den Berg, A. Selective low concentration ammonia sensing in a microfluidic lab-on-a-chip. IEEE Sens. J. 2006, 6, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Toda, K.; Li, J.; Dasgupta, K. Measurement of Ammonia in Human Breath with a Liquid-Film Conductivity Sensor. Anal. Chem. 2006, 78, 7284–7291. [Google Scholar] [CrossRef] [PubMed]
- Yimit, A.; Itoh, K.; Murabayashi, M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens. Actuators B 2003, 88, 239–245. [Google Scholar] [CrossRef]
- Zan, H.; Tsai, W.; Lo, Y.; Wu, Y.; Yang, Y. Pentacene-Based organic Thin Film Transistors for Ammonia Sensing. IEEE Sens. J. 2012, 12, 594–601. [Google Scholar] [CrossRef]
- Crone, B.; Dodabalapur, A.; Gelperin, A.; Torsi, L.; Katz, H.E.; Lovinger, A.J.; Bao, Z. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett. 2001, 78, 22–29. [Google Scholar] [CrossRef]
- Gouma, P.; Kalyanasundaram, K.; Yun, X. Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath. IEEE Sens. J. 2010, 10, 49–53. [Google Scholar] [CrossRef]
- Hibbard, T.; Crowley, K.; Killard, A. Direct measurment of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor. Anal. Chim. Acta 2013, 779, 56–63. [Google Scholar] [CrossRef]
- Germanese, D.; Righi, M.; Benassi, A.; D’Acunto, M.; Leone, R.; Magrini, M.; Paradisi, P.; Puppi, D.; Salvetti, O. A low cost, portable device for breath analysis and self-monitoring, the Wize Sniffer. In Proceedings of the International Conference on Applications in Electronics Pervading Industry, Environment and Society 2016; Lecture Notes Electrical Engineering; De Gloriam, A., Ed.; Springer: Cham, Switzerland, 2017; Volume 409, pp. 51–57. [Google Scholar]
- Germanese, D.; D’Acunto, M.; Magrini, M.; Righi, M.; Salvetti, O. A low cost technology-based device for breath analysis and self-monitoring. In Proceedings of the Second International Conference on Advances in Signal, Image and Video Processing, SIGNAL2017, Barcelona, Spain, 22–25 May 2017; pp. 8–13. [Google Scholar]
- Shier, D.; Butler, J.; Lewis, R. (Eds.) Holes Human Anatomy and Physiology, 11th ed.; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Clifford, P.; Tuma, D. Characteristics of semiconductor gas sensors I. Steady state gas response. Sens. Actuators 1982, 3, 233–254. [Google Scholar] [CrossRef]
- Germanese, D.; D’Acunto, M.; Magrini, M.; Righi, M.; Salvetti, O. Cardio-metabolic diseases prevention by self-monitoring the breath. Sens. Transducers J. 2017, 215, 19–26. [Google Scholar]
- Germanese, D.; D’Acunto, M.; Righi, M.; Magrini, M.; Salvetti, O. The Wize Sniffer Knows What You Did: Prevent Cardio-Metabolic Risk by Analyzing Your Breath. Int. J. Adv. Life Sci. 2017, 9, 198–207. [Google Scholar]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic nose feature extraction methods: A review. Sensors 2015, 15, 2784–27831. [Google Scholar] [CrossRef] [PubMed]
- Setkus, A.; Olekas, A.; Senuliene, D.; Falasconi, M.; Pardo, M.; Sberveglieri, G. Analysis of the dynamic features of metal oxide sensors in response to spme fiber gas release. Sens. Act. B Chem. 2010, 146, 539–544. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, J.; Wu, S.; Huang, X. Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data. Sensors 2003, 3, 101–109. [Google Scholar]
- Kermit, M.; Tomic, O. Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J. 2003, 3, 500–511. [Google Scholar] [CrossRef]
- Llobet, E.; Brezmes, J.; Vilanova, X.; Sueiras, J.E.; Correig, X. Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array. Sens. Actuators B 1997, 41, 13–21. [Google Scholar] [CrossRef]
- Bowie, C.; Harvey, P. Administration and interpretation of the trail making test. Nat. Prot. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Thekedar, B.; Szymczak, W.; Hollriegl, V.; Hoeschen, C.; Oeh, U. Investigations on the variability of breath gas sampling using ptr-ms. J. Breath Res. 2009, 3, 027007. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Kischkel, S.; Sawacki, A.; Lieban, T.; Mieth, M.; Schubert, J. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2008, 2, 026007. [Google Scholar] [CrossRef] [PubMed]
- Thekedar, B.; Oeh, U.; Szymczak, W.; Hoeschen, C.; Paretzke, H.G. Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations. J. Breath Res. 2011, 5, 016001. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, R.K.; Chawla, Y.K. Minimal hepatic encephalopathy. Indian J. Gastroenterol. 2009, 28, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Stremmel, W. The diagnosis and treatment of minimal hepatic encephalopathy. Dtsch. Ärzteblatt Int. 2012, 109, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, F.; Falcitelli, M.; Marano, L.; Pioggia, G. A radially symmetric measurement chamber for electronic noses. Sens. Actuators B Chem. 2005, 105, 295–303. [Google Scholar] [CrossRef]
- Panayotov, I.; Valerie, O.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 2016, 27, 118. [Google Scholar] [CrossRef]
Sensor | Detected Molecules | Best Detection Range (ppm) | Drift Coeff. due to Humidity ( / hum (mV)) |
---|---|---|---|
MQ7 | carbon monoxide | 20–200 | 296 |
hydrogen | 20–200 | ||
TGS2620 | carbon monoxide | 50–5000 | 60 |
hydrogen | 50–5000 | ||
ethanol | 50–5000 | ||
TGS2602 | ethanol | 1–10 | 82 |
hydrogen sulfide | 1–10 | ||
hydrogen | 1–10 | ||
ammonia | 1–10 | ||
TGS821 | hydrogen | 10–5000 | 120 |
TGS2444 | ammonia | 0.1–30 | 84 |
TGS4161 | carbon dioxide | 0–4000 | 56 |
TGS2444 | TGS2444 | TGS2444 | TGS2602 | TGS2602 | TGS2602 | |
---|---|---|---|---|---|---|
(V) | (msec) | max | (V) | (msec) | max | |
(IQR) | (IQR) | (IQR) | (IQR) | (IQR) | (IQR) | |
HC | 0.39 (0.14) | 750 (250) | 0.06 (0.03) | 0.32 (0.16) | 1250 (1562.50) | 0.01 (0.07) |
NC-CLD | 0.63 (0.41) | 1250 (625) | 0.06 (0.05) | 0.57 (0.34) | 3750 (1125) | 0.02 (0.01) |
CIRRH | 0.76 (0.58) | 1000 (500) | 0.09 (0.11) | 0.62 (0.44) | 2750 (1500) | 0.03 (0.02) |
CHE | 1 (0.74) | 750 (500) | 0.11 (0.17) | 0.8 (0.6) | 2750 (1375) | 0.04 (0.06) |
CUT-OFF | AUC-ROC | p-Value | VP | VN | FP | FN | SENS. | SPEC. | |
---|---|---|---|---|---|---|---|---|---|
95%CI | |||||||||
HC | = 0.572 V | 0.867 | <0.0001 | 37 | 15 | 1 | 11 | 0.771 | 0.938 |
vs. LD | 0.783–0.952 | ||||||||
NC-CLD | = 0.093 | 0.642 | <0.037 | 17 | 13 | 7 | 11 | 0.607 | 0.650 |
vs. CIRRH | 0.486–0.798 | ||||||||
CIRRH | = 0.065 | 0.864 | 0 | 4 | 21 | 1 | 2 | 0.666 | 0.954 |
vs. CHE | 0.662–1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germanese, D.; Colantonio, S.; D’Acunto, M.; Romagnoli, V.; Salvati, A.; Brunetto, M. An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study. Sensors 2019, 19, 3656. https://doi.org/10.3390/s19173656
Germanese D, Colantonio S, D’Acunto M, Romagnoli V, Salvati A, Brunetto M. An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study. Sensors. 2019; 19(17):3656. https://doi.org/10.3390/s19173656
Chicago/Turabian StyleGermanese, Danila, Sara Colantonio, Mario D’Acunto, Veronica Romagnoli, Antonio Salvati, and Maurizia Brunetto. 2019. "An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study" Sensors 19, no. 17: 3656. https://doi.org/10.3390/s19173656
APA StyleGermanese, D., Colantonio, S., D’Acunto, M., Romagnoli, V., Salvati, A., & Brunetto, M. (2019). An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study. Sensors, 19(17), 3656. https://doi.org/10.3390/s19173656