An Active Self-Driven Piezoelectric Sensor Enabling Real-Time Respiration Monitoring
<p>(<b>a</b>) Cross-sectional schematic illustration of a piezoelectric-transducer-gated thin-film transistor (PTGTFT) where a PVDF transducer is connected to a FIN-shaped a-Si:H piezoelectric transducer and a dual-gate thin-film transistor (DG-TFT); (<b>b</b>) equivalent circuit diagram of respiration monitoring sensor system composed of a PTGTFT, low-power analog front end (AFE) and conventional data acquisition module (MSP430F149); and (<b>c</b>) photo of the experimental setup for measuring the respiration rhythm signal by the proposed sensor system.</p> "> Figure 2
<p>(<b>a</b>) Transfer characteristics of 3-D FIN-shaped DG-TFT, when operating in a self-driven mode; (<b>b</b>) Current variation of the fabricated 3-D FIN-shaped DG-TFT when operating in saturation region; (<b>c</b>) mechanical stability assessment and time-resolution evaluation of PTGTFT sensor at 6.5 Hz and force of 1 N.</p> "> Figure 3
<p>Dynamic response of the sensor at two peripheral points of (<b>a</b>) neck and chest; (<b>b</b>) signal of one complete respiration cycle.</p> "> Figure 4
<p>(<b>a</b>) Dynamic response of the sensor in different respiration modes at rest; (<b>b</b>) respiration monitoring tests for three different daily activities when the subject is (I) sitting; (II) lying; (III) standing, and (IV) walking.</p> "> Figure 5
<p>(<b>a</b>) Phase analysis of human respiration rhythm; relation of expiratory time and sum of inspiratory and pause time in during respiration mode of (<b>b</b>) deep, (<b>c</b>) moderate, and (<b>d</b>) rapid.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Sensor Architecture
2.2. Analytical Modeling
2.3. Sensor Fabrication
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics—2019 update: A report from the American heart association. Circulation 2019, 139, e56–e66. [Google Scholar] [CrossRef] [PubMed]
- Cretikos, M.A.; Bellomo, R.; Hillman, K.; Chen, J.; Finfer, S.; Flabouris, A. Respiratory rate: The neglected vital sign. Med. J. Aust. 2008, 188, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yan, C.; Liu, Z.; Fu, X.; Peng, L.M.; Hu, Y.; Zheng, Z. Machine-Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Adv. Mater. 2016, 28, 10267–10274. [Google Scholar] [CrossRef] [PubMed]
- Lochner, C.M.; Khan, Y.; Pierre, A.; Arias, A.C. All-organic Optoelectronic Sensor for Pulse Oximetry. Nat. Commun. 2014, 5, 5745. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Tee, B.C.K.; Chortos, A.L.; Schwartz, G.; Tse, V.; Lipomi, D.J.; Wong, H.S.P.; McConnell, M.V.; Bao, Z. Continuous Wireless Pressure Monitoring and Mapping with Ultra-small Passive Sensors for Health Monitoring and Critical Care. Nat. Commun. 2014, 5, 5028. [Google Scholar] [CrossRef] [PubMed]
- Tatara, T.; Tsuzaki, K. An apnea monitor using a rapid-response hygrometer. J. Clin. Monit. Comput. 1997, 13, 5–9. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Lo Presti, D.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-Based Methods for Measuring Respiratory Rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef]
- Oki, Y.; Kaneko, M.; Fujimoto, Y.; Sakai, H.; Misu, S.; Mitani, Y.; Yamaguchi, T.; Yasuda, H.; Ishikawa, A. Usefulness of the 6-minute walk test as a screening test for pulmonary arterial enlargement in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2869–2875. [Google Scholar] [CrossRef]
- Lu, K.; Yang, L.; Seoane, F.; Abtahi, F.; Forsman, M.; Lindecrantz, K. Fusion of Heart Rate, Respiration and Motion Measurements from a Wearable Sensor System to Enhance Energy Expenditure Estimation. Sensors 2018, 18, 3092. [Google Scholar] [CrossRef]
- Chon, K.H.; Dash, S.; Kihwan, J. Estimation of Respiratory Rate from Photoplethysmogram Data Using Time-Frequency Spectral Estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, Q. Respiratory rate monitoring from the photoplethysmogram via sparse signal reconstruction. Physiol. Meas. 2016, 37, 1105–1119. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, J.Y.; Im, C.H. Fast and robust real-time estimation of respiratory rate from photoplethysmography. Sensors 2016, 16, 1494. [Google Scholar] [CrossRef] [PubMed]
- Dieffenderfer, J.; Goodell, H.; Mills, S.; McKnight, M.; Yao, S.; Lin, F.; Beppler, E.; Bent, B.; Lee, B.; Misra, V.; et al. Low-Power Wearable Systems for Continuous Monitoring of Environment and Health for Chronic Respiratory Disease. IEEE J. Biomed. Health Inform. 2016, 20, 1251–1264. [Google Scholar] [CrossRef] [PubMed]
- Guder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T.J.; Whitesides, G.M. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 2016, 55, 5727–5732. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Wang, X.; Qiao, Y.; Tian, H.; Yang, Y.; et al. Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 2018, 116, 123–129. [Google Scholar] [CrossRef]
- Kano, S.; Dobashi, Y.; Fujii, M. Silica Nanoparticle-Based Portable Respiration Sensor for Analysis of Respiration Rate, Pattern, and Phase during Exercise. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi Najafabadi, A.; Futaba, D.N.; Hata, K. A Stretchable Carbon Nanotube Strain sensor for Human-Motion Detection. Nat. Nanotechnol. 2011, 6, 296–301. [Google Scholar] [CrossRef]
- Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. A Wearable and Highly Sensitive Pressure Sensor with Ultrathin Gold Nanowires. Nat. Commun. 2014, 5, 3132. [Google Scholar] [CrossRef]
- Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, Skin Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Hamdani, S.T.A.; Anura, F. The application of a piezo-resistive cardiorespiratory sensor system in an automobile safety belt. Sensors 2015, 15, 7742–7753. [Google Scholar] [CrossRef]
- Lei, K.F.; Hsieh, Y.Z.; Chiu, Y.Y.; Wu, M.H. The structure design of piezoelectric poly (vinylidene fluoride) (PVDF) polymer-based sensor patch for the respiration monitoring under dynamic walking conditions. Sensors 2015, 15, 18801–18812. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C.A.; Zhu, D. Flexible Suspended Gate Organic Thin-Film Transistors for Ultra Sensitive Pressure Detection. Nat. Commun. 2015, 6, 6269. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Li, R.; Cao, J.; Brandt, J.D.; Pan, T. Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing. Adv. Mater. 2015, 27, 6055–6062. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Yang, Q.; Wang, D.; Luo, W.; Wang, W.; Lin, M.; Liang, D.; Luo, Q. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017, 38, 147–154. [Google Scholar] [CrossRef]
- Dinh, T.; Phan, H.P.; Nguyen, T.K.; Qamar, A.; Woodfield, P.; Zhu, Y.; Nguyen, N.T.; Dao, D.V. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D. Appl. Phys. 2017, 50, 215401. [Google Scholar] [CrossRef]
- Chen, S.W.; Wu, N.; Ma, L.; Lin, S.Z.; Yuan, F.; Xu, Z.S.; Li, W.B.; Wang, B.; Zhou, J. Noncontact heartbeat and respiration monitoring based on a hollow microstructured self-powered pressure sensor. ACS Appl. Mater. Interfaces 2018, 10, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Hu, Z.; Quan, L.; Shi, L.; Chen, J.; Xuan, W.; Zhang, Z.; Dong, S.; Luo, J. Waist-wearable wireless respiration sensor based on triboelectric effect. Nano Energy 2019, 59, 75–83. [Google Scholar] [CrossRef]
- Rasheed, A.; Iranmanesh, E.; Li, W.; Feng, X.; Ou, H.; Wang, K. A Wearable Self-Driven Impulse Sensor Based on a Mechanical-Field-Coupled Thin-Film Transistor. IEEE Electron Device Lett. 2018, 39, 1756–1759. [Google Scholar] [CrossRef]
- Rasheed, A.; Iranmanesh, E.; Li, W.; Ou, H.; Andrenko, A.S.; Wang, K. A wearable autonomous heart rate sensor based on piezoelectric-charge-gated thin-film transistor for continuous multi-point monitoring. In Proceedings of the 39th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 3281–3284. [Google Scholar] [CrossRef]
- Li, W.; Rasheed, A.; Feng, X.; Iranmanesh, E.; Wang, K.; Ou, H.; Chen, J.; Deng, S.; Xu, N. Mechanical-field-coupled thin-film transistor for tactile sensing with mN dynamic force detection capability and wearable self-driven heart rate monitoring with μW power consumption. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 18.3.1–18.3.4. [Google Scholar] [CrossRef]
- Dziuda, L.; Zielińsk, P.; Baran, P.; Krej, M.; Kopka, L. A study of the relationship between the level of anxiety declared by MRI patients in the STAI questionnaire and their respiratory rate acquired by a fiber-optic sensor system. Sci. Rep. 2019, 9, 4341. [Google Scholar] [CrossRef]
Sensor System | Operating Voltage (V) | Power Consumption (W) | Response Time (sec) | Dynamic Range | Sensitivity (@ 0.5N) | SNR (dB) | Device Process |
---|---|---|---|---|---|---|---|
Triboelectric Based Sensing Method [27] | Self-Driven (~0 V) | <1 m | ~100 m | ~ 0.2 N to 10 N | ~600 mV | 45 | Low cost and simple |
Humidity Based Measurement [16] | >5 V | ~20 m | ~700 m | —— | Low | —— | Low cost and complex |
Optical Based Sensing Method [12,13] | >3 V | ~60 m | >1000 m | —— | Low | Low | Medium cost and complex |
This Work | Self-Driven (~0 V) | ~600 µ | 50 m | > 50 mN | ~800 mV | >20 | Low cost and simple |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasheed, A.; Iranmanesh, E.; Li, W.; Xu, Y.; Zhou, Q.; Ou, H.; Wang, K. An Active Self-Driven Piezoelectric Sensor Enabling Real-Time Respiration Monitoring. Sensors 2019, 19, 3241. https://doi.org/10.3390/s19143241
Rasheed A, Iranmanesh E, Li W, Xu Y, Zhou Q, Ou H, Wang K. An Active Self-Driven Piezoelectric Sensor Enabling Real-Time Respiration Monitoring. Sensors. 2019; 19(14):3241. https://doi.org/10.3390/s19143241
Chicago/Turabian StyleRasheed, Ahmed, Emad Iranmanesh, Weiwei Li, Yangbing Xu, Qi Zhou, Hai Ou, and Kai Wang. 2019. "An Active Self-Driven Piezoelectric Sensor Enabling Real-Time Respiration Monitoring" Sensors 19, no. 14: 3241. https://doi.org/10.3390/s19143241
APA StyleRasheed, A., Iranmanesh, E., Li, W., Xu, Y., Zhou, Q., Ou, H., & Wang, K. (2019). An Active Self-Driven Piezoelectric Sensor Enabling Real-Time Respiration Monitoring. Sensors, 19(14), 3241. https://doi.org/10.3390/s19143241