An Intelligent Fire Warning Application Using IoT and an Adaptive Neuro-Fuzzy Inference System
<p>Typical Adaptive neuro-fuzzy Inference System (ANFIS) units.</p> "> Figure 2
<p>The architecture of the fire alarm system.</p> "> Figure 3
<p>Temperature and humidity sensor used in the proposed system.</p> "> Figure 4
<p>Flame sensor used in the proposed system.</p> "> Figure 5
<p>Smoke sensor used in the proposed system.</p> "> Figure 6
<p>Training process.</p> "> Figure 7
<p>The ANFIS structure.</p> "> Figure 8
<p>ANFIS Sugeno engine.</p> "> Figure 9
<p>CR-Temp MF plot.</p> "> Figure 10
<p>MF plot for CR-Humidity.</p> "> Figure 11
<p>MF plot for TIME.</p> "> Figure 12
<p>MF plot for Smoke.</p> "> Figure 13
<p>ANFIS generated rules.</p> "> Figure 14
<p>Proteus simulation.</p> "> Figure 15
<p>ANFIS rules viewer.</p> "> Figure 16
<p>ANFIS output for different inputs.</p> "> Figure 17
<p>Fire-Chances with input variations.</p> "> Figure 18
<p>Average testing results.</p> "> Figure 19
<p>CR-Humidity v/s CR-Temp surface plot.</p> "> Figure 20
<p>Time vs. CR-Temp surface plot.</p> "> Figure 21
<p>CR-Smoke vs. CR-Temp surface plot.</p> "> Figure 22
<p>CR-smoke vs. CR-Humidity surface Plot.</p> ">
Abstract
:1. Introduction
Related Works
2. Materials and Methods
2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS) Architecture
2.2. Architecture of Proposed FDWS
2.1.1. Hardware Development in Proposed FDWS
2.1.2. PLX-DAQ
2.1.3. Coding in Arduino IDE
2.1.4. Gathering Sensor’s Data for Input Datasets
2.1.5. MATLAB Simulation in Proposed FDWS
3. ANFIS Implementation for Proposed FDWS
ANFIS Generated Rules in MATLAB Rules Editor
4. Results and Discussion
4.1. Proteus Simulation for Proposed FDWS
4.2. MATLAB ANFIS Simulation
4.3. Contribution to Knowledge
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Jang, J.S. Input selection for ANFIS learning. In Proceedings of the IEEE 5th International Fuzzy Systems, New Orleans, LA, USA, 11 September 1996; Volume 2. [Google Scholar]
- Saeed, F.; Paul, A.; Rehman, A.; Hong, W.H.; Seo, H. IoT-Based Intelligent Modeling of Smart Home Environment for Fire prevention and Safety. J. Sens. Actuator Netw. 2018, 7, 11. [Google Scholar] [CrossRef]
- Manolakos, E.; Logaras, E.; Paschos, F. Wireless Sensor Network Application or Fire Hazard Detection and Monitoring. Lecture Notesof the Institute for Computer Sciences. Soc. Inform. Telecommun. Eng. 2012, 29, 1–15. [Google Scholar]
- Soliman, H.; Sudan, K.; Mishra, A. A Smart Forest Fire Early Detection Sensory System, Another Approach of Utilizing Wireless Sensor and Neural Networks. In Proceedings of the IEEE SENSORS 2010 Conference, Kona, HI, USA, 1–4 November 2010. [Google Scholar]
- Yu, X.; Efe, M.O.; Kaynak, O. A general backpropagation algorithm for feedforward neural networks learning. IEEE Trans. Neural Netw. 2002, 13, 251–254. [Google Scholar] [PubMed]
- Tan, W.; Wang, Q.; Huang, H.; Guo, Y.; Zhan, G. Mine Fire Detection System Based on Wireless Sensor Networks. In Proceedings of the Conference on Information Acquisition (ICIA’07), Seogwipo-si, Korea, 8–11 July 2007. [Google Scholar]
- Aslan, Y.E.; Korpeoglu, I.; Ulusoy, Ö. A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 2012, 36, 614–625. [Google Scholar] [CrossRef]
- Son, B.; Her, Y.S.; Kim, J.G. A design and implementation of forest-fires surveillance system based on wireless sensor networks for South Korea Mountains. Int. J. Comput. Sci. Netw. Secur. 2006, 6, 124–130. [Google Scholar]
- Mathworks. Available online: https://www.mathworks.com/products/fuzzy-logic/features.html#building-a-fuzzy-inference-system (accessed on 21 March 2018).
- Maksimovic, M.; Vujovic, V.; Perišic, B.; Miloševic, V. Developing a fuzzy logic based system for monitoring and early detection of residential fire based on thermistor sensors. Comput. Sci. Inf. Syst. 2015, 12, 63–89. [Google Scholar]
- Muralidharan, A.; Joseph, F. Fire Detection System using Fuzzy logic. Int. J. Eng. Sci. Res. Technol. 2014, 3, 6041–6044. [Google Scholar]
- Chou, P.H.; Hsu, Y.L.; Lee, W.L.; Kuo, Y.C.; Chang, C.C.; Cheng, Y.S.; Chang, H.C.; Lin, S.L.; Yang, S.C.; Lee, H.H. Development of a smart home system based on multi-sensor data fusion technology. In Proceedings of the international conference on applied system innovation (ICASI), Sapporo, Japan, 13–17 May 2017. [Google Scholar]
- Sowah, R.; Ampadu, K.O.; Ofoli, A.; Koumadi, K.; Mills, G.A.; Nortey, J. Design and Implementation of a Fire Detection and Control System for Automobiles using Fuzzy logic. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, 2–6 October 2016. [Google Scholar]
- Olivares-Mercado, J.; Toscano-Medina, K.; Sánchez-Perez, G.; Hernandez-Suarez, A.; Perez-Meana, H.; Sandoval Orozco, A.L.; García Villalba, L.J. Early Fire Detection on Video Using LBP and Spread Ascending of Smoke. Sustainability 2019, 11, 3261. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.; Yun, S.; Kim, H.; Kim, W.T. Dependable fire detection system with multifunctional artificial intelligence framework. Sensors 2019, 19, 2025. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, B.; Bajwa, I.; Ramzan, S.; Ramzan, B.; Kausar, M. Design and Application of Fuzzy logic Based Fire Monitoring and Warning Systems for Smart Buildings. Symmetry 2018, 10, 615. [Google Scholar] [CrossRef]
- Chiang, S.Y.; Kan, Y.C.; Chen, Y.S.; Tu, Y.C.; Lin, H.C. Fuzzy computing model of activity recognition on WSN movement data for ubiquitous healthcare measurement. Sensors 2016, 16, 2053. [Google Scholar] [CrossRef] [PubMed]
- Hosoz, M.; Kaplan, K.; Aral, M.C.; Suhermanto, M.; Ertunc, H.M. Support vector regression modeling of the performance of an R1234yf automotive air conditioning system. Energy Procedia 2018, 153, 309–314. [Google Scholar] [CrossRef]
- Tien Bui, D.; Khosravi, K.; Li, S.; Shahabi, H.; Panahi, M.; Singh, V.; Chapi, K.; Shirzadi, A.; Panahi, S.; Chen, W.; et al. New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water 2018, 10, 1210. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, Y.; Hoehler, M.; Chen, G. Review of fiber optic sensors for structural fire engineering. Sensors 2019, 19, 877. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Bajwa, I.S.; Cheema, S.M. An Intelligent and Secure IoT based Smart Watering System using Fuzzy logic and Blockchain. Comput. Electr. Eng. 2019, 77, 109–119. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Pirbhulal, S.; Luo, Z.; de Albuquerque, V.H.C. Towards an optimal resource management for IoT based Green and sustainable smart cities. J. Clean. Prod. 2019, 220, 1167–1179. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Pirbhulal, S.; de Albuquerque, V.H.C. Artificial Intelligence Driven Mechanism for Edge Computing based Industrial Applications. IEEE Trans. Ind. Inform. 2019, 15, 4235–4243. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Malokani, A.S.; Sodhro, G.H.; Muzammal, M.; Zongwei, L. An adaptive QoS computation for medical data processing in intelligent healthcare applications. In Neural Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2019; Volume 30, pp. 1–12. [Google Scholar]
Time | Flame Presence | Smoke | Humidity | Temperature |
---|---|---|---|---|
5:19:17 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:18 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:19 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:21 PM | No Flame | 3.04 ppm | 23.00% | 35.00 °C |
5:19:22 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:24 PM | No Flame | 3.04 ppm | 23.00% | 35.00 °C |
5:19:25 PM | No Flame | 3.04 ppm | 23.00% | 35.00 °C |
5:19:27 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:28 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:30 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:31 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:33 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:34 PM | No Flame | 3.04 ppm | 22.00% | 35.00 °C |
5:19:36 PM | No Flame | 3.08 ppm | 23.00% | 36.00 °C |
5:19:37 PM | Flame detected! | 3.12 ppm | 24.00% | 36.00 °C |
5:19:39 PM | Flame detected! | 3.31 ppm | 24.00% | 36.00 °C |
5:19:40 PM | Flame detected! | 3.38 ppm | 25.00% | 36.00 °C |
5:19:42 PM | Flame detected! | 3.34 ppm | 25.00% | 36.00 °C |
5:19:43 PM | Flame detected! | 3.31 ppm | 24.00% | 36.00 °C |
Experiment 1 | ||||
---|---|---|---|---|
Sr.no | Time Interval (Minute) | C-R Temp (°C) | C-R Humidity (%) | C-R Smoke (ppm) |
1 | 2.8 | 0 | 0 | 0 |
2 | 3 | 2 | −2.8 | 3.8 |
3 | 4.1 | 3.8 | −1.3 | 4 |
4 | 4 | 6.4 | 10.8 | 10.2 |
5 | 2 | 3 | 7.1 | 4.12 |
6 | 3.3 | 4.6 | 9.5 | 8.56 |
7 | 1.4 | 2 | 5 | 4 |
8 | 2.44 | 5 | 7.6 | 10 |
Experiment 2 | |||
---|---|---|---|
Time Interval (Minutes) | CR-Temp (°C) | CR-Humidity (%) | CR-Smoke (ppm) |
1.5 | 0.6 | 0.8 | 0.9 |
1.16 | 2.2 | 1.9 | 3.3 |
56 s | 1.2 | 2.2 | 3 |
2.38 | 3 | 2.5 | 6 |
2.12 | 1 | 2 | 2 |
1.56 | 3 | 6 | 5.5 |
2 | 2.8 | 8 | 6 |
2 | 3.2 | 6 | 6.73 |
Variable | CR-Temp (°C) | CR-Humidity (%) | CR-Smoke (ppm) | Fire-Chances | Time (Min) |
---|---|---|---|---|---|
Low | 0–4 | 0–8 | 0–8 | 0–30 | - |
Mid | 2.5–8.5 | 5–14 | 5–15 | 30–60 | - |
High | 5.5–10 | 12–20 | 12–20 | 60–100 | - |
Short | - | - | - | 0–5 | |
Long | - | - | - | 4–9 |
Flame | Repeat First Step | Go to Next Step |
---|---|---|
Flame Detected | No | Yes |
Flame is not detected | Yes | No |
Sr. No | CR-Temp (C) | Fire Chances | Condition |
---|---|---|---|
1 | 0–2 | 0–20 | Normal |
2 | 2–5 | 20–40 | Critical |
3 | 5–10 | >60 | Severely critical |
Sr. No | CR-Humidity | Fire Chances | Condition |
---|---|---|---|
1 | 0–8 | 0–20 | Normal |
2 | 4–14 | 20–40 | Critical |
3 | >15 | >60 | Severely critical |
Sr. No | Smoke (ppm) | Fire Chances | Condition |
---|---|---|---|
1 | 0–8 | 0–20 | Normal |
2 | 4–14 | 20–40 | Critical |
3 | 12–20 | >60 | Severely critical |
Properties | Methods | |
---|---|---|
FIS | ANFIS | |
Non-linear characterization | Yes | Yes |
Automatic training | No | Yes |
Knowledge needed for modeling biological phenomenon | A lot of human effort Requires | Do automatically from Datasets |
Automatic Adaptation of output and membership functions | No | Yes |
Sr. No. | CR-Temp (°C) | Flame Presence | CR-Humidity (%) | CR-Smoke (ppm) | Time (Min) | Chances of True Fire (%) | ANFIS Case | FIS Case | Original Case | Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.53 | 1 | 7.85 | 2.1 | 2.53 | 8.4 | Low | Low | Low | 100% |
2 | 5.1 | 1 | 9.9 | 10.3 | 5 | 50 | Mid | Mid | Mid | 100% |
3 | 3.66 | 1 | 9.6 | 9.5 | 2.53 | 40 | Mid | Mid | Mid | 100% |
4 | 7.31 | 1 | 12.9 | 14.4 | 1.99 | 61.2 | High | High | High | 100% |
5 | 7.89 | 1 | 14.3 | 13.4 | 7.3 | 82.9 | High | High | High | 100% |
6 | 1.87 | 1 | 3.01 | 5 | 1.49 | 14.3 | Low | Low | Low | 100% |
7 | 2.71 | 1 | 5.18 | 5.2 | 2.51 | 45 | Mid | Mid | Mid | 100% |
8 | 8.1 | 1 | 7.35 | 14.2 | 1.39 | 67.7 | High | High | High | 100% |
9 | 6.69 | 1 | 17.2 | 12.9 | 2.35 | 83.4 | High | High | High | 100% |
10 | 1.27 | 1 | 14.8 | 2.4 | 2.35 | 45 | Low | Mid | Low | 100% |
11 | 5.48 | 1 | 10 | 10.3 | 1.39 | 65.9 | High | High | High | 100% |
12 | 8.9 | 1 | 16.1 | 15.2 | 4.04 | 83.9 | High | Mid | High | 100% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, B.; Bajwa, I.S.; Jamil, N.; Ramzan, S.; Sarwar, N. An Intelligent Fire Warning Application Using IoT and an Adaptive Neuro-Fuzzy Inference System. Sensors 2019, 19, 3150. https://doi.org/10.3390/s19143150
Sarwar B, Bajwa IS, Jamil N, Ramzan S, Sarwar N. An Intelligent Fire Warning Application Using IoT and an Adaptive Neuro-Fuzzy Inference System. Sensors. 2019; 19(14):3150. https://doi.org/10.3390/s19143150
Chicago/Turabian StyleSarwar, Barera, Imran Sarwar Bajwa, Noreen Jamil, Shabana Ramzan, and Nadeem Sarwar. 2019. "An Intelligent Fire Warning Application Using IoT and an Adaptive Neuro-Fuzzy Inference System" Sensors 19, no. 14: 3150. https://doi.org/10.3390/s19143150
APA StyleSarwar, B., Bajwa, I. S., Jamil, N., Ramzan, S., & Sarwar, N. (2019). An Intelligent Fire Warning Application Using IoT and an Adaptive Neuro-Fuzzy Inference System. Sensors, 19(14), 3150. https://doi.org/10.3390/s19143150