The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification
<p>The components and basic principle of the VNIS.</p> "> Figure 2
<p>Structural and functional schematic view of the calibration unit.</p> "> Figure 3
<p>The optical design diagram of the VNIS.</p> "> Figure 4
<p>Schematic diagram of the phase-locked processing circuit of infrared channel.</p> "> Figure 5
<p>The picture of the SWIR channel processing circuit and the detector. The infrared detector type is J23TE2-66C-R01M-2.6, and is manufactured by Judson, with a peak current response rate of 1.2 A/W.</p> "> Figure 6
<p>The information flow model of infrared spectrum acquisition based on acousto-optic tunable filter (AOTF) modulation.</p> "> Figure 7
<p>The signal-to-noise ratio (SNR) curve comparison between the static electronic phase-locked acquisition method (black) and the direct signal acquisition method (red).</p> "> Figure 8
<p>The experimental test was carried out in a dark room, using a halogen lamps to illuminate the diffuse reflection plate (reflectance >90%), and then at the same angle, using both VNIS (ground verification equipment) and a commercial spectrometer ((FieldSpec 4, Analytica Spectra Devices), Inc.) measure the spectral radiance forced by the diffuse reflection plate [<a href="#B15-sensors-19-02806" class="html-bibr">15</a>].</p> "> Figure 9
<p>The original infrared full spectrum signal measured in the laboratory.</p> "> Figure 10
<p>The analog signals of VNIS at 1.7 μm captured by oscilloscope (corresponding to A, B, C and D in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>). (<b>a</b>) The analog signal after current to voltage(I-V) conversion captured by oscilloscope (point A in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>); (<b>b</b>) The analog signal before phase-locked circuit captured by oscilloscope (the yellow is for point B in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>, and the green is for point C in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>); (<b>c</b>) The analog signal after the phase-locked circuit captured by oscilloscope (point D in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>).</p> "> Figure 10 Cont.
<p>The analog signals of VNIS at 1.7 μm captured by oscilloscope (corresponding to A, B, C and D in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>). (<b>a</b>) The analog signal after current to voltage(I-V) conversion captured by oscilloscope (point A in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>); (<b>b</b>) The analog signal before phase-locked circuit captured by oscilloscope (the yellow is for point B in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>, and the green is for point C in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>); (<b>c</b>) The analog signal after the phase-locked circuit captured by oscilloscope (point D in <a href="#sensors-19-02806-f006" class="html-fig">Figure 6</a>).</p> "> Figure 11
<p>The first scene (which is defined as point A) obtained by VNIS on the far side of the moon. The VNIS is used to detect lunar surface objects and the optical axis of the VIS/NIR channel and SWIR channel are parallel to one another at an 18 mm distance [<a href="#B15-sensors-19-02806" class="html-bibr">15</a>,<a href="#B16-sensors-19-02806" class="html-bibr">16</a>]. The FOV (Field of view) in the VIS/NIR and SWIR are 8.5° × 8.5° and Φ 3.58°, respectively. The circle represents the SWIR channel’s FOV, which has a diameter of 107.6 pixels and is centered at the coordinate (98, 127.5) of the VIS/NIR image in 1 m detection distance typically.</p> "> Figure 12
<p>The original digital number (DN) values of the far side of the moon surface at the A point.</p> "> Figure 13
<p>The full-spectrum signal to noise ratio (SNR) curve of the far side of the moon surface at point A.</p> "> Figure 14
<p>The spectral reflectance curve of the far side of the moon surface at point A.</p> ">
Abstract
:1. Introduction
2. Instrument Description
2.1. Basic Principle of The Visible and Near-IR Imaging Spectrometer (VNIS)
2.2. Optical Design of the SWIR Channel
2.3. The Information Link of Infrared Channel
3. Signal Flow Model Simulation and Testing
3.1. The Signal Acquisition Model of Infrared Spectral
- ➢
- E = 217 W/m2/μ[email protected] μm;
- ➢
- A = 1 mm2;
- ➢
- F#: 2.8;
- ➢
- τ0 = [email protected] μm;
- ➢
- Δλ = 8 [email protected] μm;
- ➢
- Rλ = 1.2 A/[email protected] μm;
- ➢
- θ= 15°;
- ➢
- ρ = [email protected] μm;
- ➢
- B = 1.61 W/m2/μm/[email protected] μm.
3.2. Laboratory Testing and Evaluation
4. In-Flight Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Liu, D.; Liu, B.; Ren, X.; Liu, J.; He, Z.; Zuo, W.; Zeng, X.; Xu, R.; Tan, X.; et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 2019, 569, 378–382. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, C.; Xu, R.; Lv, G.; Yuan, L.; Wang, J. Spectrometers based on acousto-optic tunable filter for in-situ lunar surface measurement. J. Appl. Remote Sens. 2019, 13, 027502. [Google Scholar] [CrossRef]
- Dai, S.W.; Wu, J.; Sun, H.X.; Zhang, B.M.; Yang, J.F.; Fang, G.Y.; Wang, J.Y.; Wang, H.Y.; An, J.S. Chang’E-3 Lunar Rover’s Scientific Payloads. Chin. J. Space Sci. 2014, 34, 332–340. [Google Scholar]
- Korablev, O.; Bertaux, J.-L.; Grigoriev, A.; Dimarellis, E.; Kalinnikov, Y.; Rodin, A.; Muller, C.; Fonteyn, D. An AOTF-based spectrometer for the studies of Mars atmosphere for Mars Express ESA mission. Adv. Space Res. 2002, 29, 143–150. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Korablev, O.; Perrier, S.; Quemerais, E.; Montmessin, F.; Leblanc, F.; Lebonnois, S.; Rannou, P.; Lefèvre, F.; Forget, F.; et al. SPICAM on Mars Express: Observing Modes and Overview of UV Spectrometer Data and Scientific Results. J. Geophys. Res. 2006, 111, E10. [Google Scholar] [CrossRef]
- Bertaux, J.L.; Nevejans, D.; Korablev, O.; Villard, E.; Quémerais, E.; Neefs, E.; Montmessin, F.; Leblanc, F.; Dubois, J.P.; Dimarellis, E.; et al. SPICAV on Venus Express: Three Spectrometers to Study the Global Structure and Composition of the Venus Atmosphere. Planet. Space Sci. 2007, 55, 1673–1700. [Google Scholar] [CrossRef]
- Glenar, D.A.; Blaney, D.L.; Hillman, J.J. AIMS: Acousto-optic Imaging Spectrometer for Spectral Mapping of Solid Surfaces. Acta Astronaut. 2003, 52, 389–396. [Google Scholar] [CrossRef]
- He, Z.P.; Wang, B.Y.; Lv, G.; Li, C.L.; Yuan, L.Y.; Xu, R.; Chen, K.; Wang, J.Y. Visible and Near-Infrared Imaging Spectrometer (VNIS) and Its Preliminary Results from the Chang’E 3 Project. Rev. Sci. Instrum. 2014, 86, 8. [Google Scholar]
- He, Z.P.; Wang, B.Y.; Lü, G.; Li, C.L.; Yuan, L.Y.; Xu, R.; Liu, B.; Chen, K.; Wang, J.Y. Operating principles and detection characteristics of Visible and Near-Infrared Imaging Spectrometer (VNIS) in Chang’e 3. Res. Astron. Astrophys. 2014, 14, 1567. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Shu, R.; Xu, R.; Chen, K.; Li, C. Visible and Near-infrared Imaging Spectrometer aboard Chinese Chang’E-3 Spacecraft. Chapter 5; In Optical Payloads for Space Missions; Qian, S.-E., Ed.; John Wiley & Sons: Chichester, UK, 2016. [Google Scholar]
- Yuan, L.; He, Z.; Lv, G.; Wang, Y.; Li, C.; Wang, J. Optical design, laboratory test, and calibration of airborne long wave infrared imaging Spectrometer. Opt. Express 2017, 25, 22440–22454. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, B.; Lv, G.; Li, C.; Yuan, L.; Xu, R.; Chen, K.; Wang, J. Visible and Near-infrared Imaging Spectrometer (VNIS) for Chang’E-3. Proc. SPIE 2014, 9263, 92630D-1. [Google Scholar]
- Liu, B.; Liu, J.Z.; Zhang, G.L.; Ling, Z.C.; Zhang, J.; He, Z.P.; Yang, B.Y.; Zou, Y.L. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang’E-3 lunar rover: Based on ground validation experiment data. Res. Astron. Astrophys. 2013, 13, 862. [Google Scholar] [CrossRef]
- Wang, J.Y.; Shu, R.; Liu, Y.N.; Ma, Y.H. Introduction of Imaging Spectral Technology; Science Press: Beijing, China, 2011. [Google Scholar]
- Xu, R.; He, Z.P.; Zhang, H.; Ma, Y.H.; Fu, Z.Q.; Wang, J.Y. Calibration of imaging spectrometer based on acousto-optic tunable filter (AOTF). Proc. SPIE 2012, 8527, 85270S. [Google Scholar]
- He, Z.; Wang, B.; Lv, G.; Li, C.; Yuan, L.; Xu, R.; Chen, K.; Wang, J. Visible and Near-infrared Imaging Spectrometer (VNIS) for In-situ Lunar Surface Measurement. Proc. SPIE 2015, 9639, 96391S. [Google Scholar]
Description | Specification | |
---|---|---|
VIS/NIR | SWIR | |
Spectral range (nm) | 450–950 | 900–2400 |
Spectral resolution (nm) | 2–10 | 3–12 |
Number of bands | 100 | 300 |
Field of view (°) | 8.5 × 8.5 | ф 3.58 |
Number of valid pixels | ≥256 × 256 | 1 |
Quantized value (bit) | 10 | 16 |
S/N ratio (dB) | ≥43 (maximum SNR) ≥33 (albedo 0.09, solar elevation angle 45°) | ≥46 (maximum SNR) ≥31 (albedo 0.09, solar elevation angle 15°) |
RF ranges (Mhz) | High frequency(F-H): 113.5–177.2 (400–632 nm) Low frequency(F-L): 71.9–113.5 (632–900 nm) | High frequency (F-H): 69.65–117.7 (900–1380 nm) Low frequency (F-L): 42.6–69.65 (1380–2400 nm) |
Modulation frequency (Hz) | -- | 500 |
Integration time (ms) | 18.2–256 (adjustable) | -- |
Detection range (m) | 0.7–1.3 | |
Measurement time (min) | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, Z.; Xu, R.; Lv, G.; Yuan, L.; He, Z.; Wang, J. The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification. Sensors 2019, 19, 2806. https://doi.org/10.3390/s19122806
Li C, Wang Z, Xu R, Lv G, Yuan L, He Z, Wang J. The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification. Sensors. 2019; 19(12):2806. https://doi.org/10.3390/s19122806
Chicago/Turabian StyleLi, Chunlai, Zhendong Wang, Rui Xu, Gang Lv, Liyin Yuan, Zhiping He, and Jianyu Wang. 2019. "The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification" Sensors 19, no. 12: 2806. https://doi.org/10.3390/s19122806
APA StyleLi, C., Wang, Z., Xu, R., Lv, G., Yuan, L., He, Z., & Wang, J. (2019). The Scientific Information Model of Chang’e-4 Visible and Near-IR Imaging Spectrometer (VNIS) and In-Flight Verification. Sensors, 19(12), 2806. https://doi.org/10.3390/s19122806