Dynamic Responses of Electrically Driven Quartz Tuning Fork and qPlus Sensor: A Comprehensive Electromechanical Model for Quartz Tuning Fork
<p>Two working configurations of electrically driven quartz tuning forks and the traditional electrical circuit model for quartz resonators. (<b>a</b>) The quartz tuning fork with two prongs can be electrically actuated and its dynamic response can also be measured electrically, where the two prongs move in opposite directions, in an antisymmetric mode of vibration; (<b>b</b>) The qPlus sensor is made by fixing one prong firmly to a supporting wall so that the other prong is allowed to vibrate. Both the actuation and the detection of the qPlus can also be made electrically; (<b>c</b>) The equivalent circuit model for quartz resonators (e.g., tuning fork, qPlus).</p> "> Figure 2
<p>Electrically measured resonance curves of the bare tuning fork and its qPlus configuration (both electrically driven). The electrical signals of the tuning fork (<b>a</b>,<b>c</b>) and qPlus (<b>b</b>,<b>d</b>) showed asymmetric curves with one peak and one local minimum. These curves were well fit by Equation (<a href="#FD1-sensors-19-02686" class="html-disp-formula">1</a>) derived from the equivalent circuit model (<a href="#sensors-19-02686-f001" class="html-fig">Figure 1</a>c). From each fit, we could uniquely determine the dynamic characteristics shown in Equation (<a href="#FD1-sensors-19-02686" class="html-disp-formula">1</a>), <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>Q</mi> <mo>,</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mo>=</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>/</mo> <mn>2</mn> <mi>π</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mover> <mi>C</mi> <mo>¯</mo> </mover> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mo>=</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>C</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, for each probe. We used two tuning forks with different sizes, electrically driven tuning fork (ED-TF) A and ED-TF B (<b>a</b>,<b>c</b>), and they were transformed to qPlus sensors, ED-qPlus A and ED-qPlus B (<b>b</b>,<b>d</b>), respectively. The electrical signal in volts (left vertical axis) was converted into mechanical amplitude in nanometers (right vertical axis) by using a theoretical method (method (a) described in Ref. [<a href="#B16-sensors-19-02686" class="html-bibr">16</a>]). For accurate calibration of oscillation amplitude, one can use experimental methods based on thermal noise spectrum (method (b) in Ref. [<a href="#B16-sensors-19-02686" class="html-bibr">16</a>]) for qPlus sensors and energy balance principle [<a href="#B21-sensors-19-02686" class="html-bibr">21</a>] generally for quartz resonators, rather than the theoretical approach.</p> "> Figure 3
<p>Dynamic characteristics of the electrically driven tuning fork and qPlus sensor. From the resonance curves (<a href="#sensors-19-02686-f002" class="html-fig">Figure 2</a>) and their fit curves using Equation (<a href="#FD1-sensors-19-02686" class="html-disp-formula">1</a>), one can uniquely determine the four dynamic characteristics, (<b>a</b>) <math display="inline"><semantics> <msub> <mi>A</mi> <mn>0</mn> </msub> </semantics></math>, (<b>b</b>) <span class="html-italic">Q</span>, (<b>c</b>) <math display="inline"><semantics> <msub> <mi>f</mi> <mn>0</mn> </msub> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <msub> <mover> <mi>C</mi> <mo>¯</mo> </mover> <mn>0</mn> </msub> </semantics></math>.</p> "> Figure 4
<p>Electromechanical model for an electrically driven tuning fork. The input voltage <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>w</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math> effectively generates the mechanical force <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mn>0</mn> </msub> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>w</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math>, given as <math display="inline"><semantics> <mrow> <mi>i</mi> <mi>α</mi> <mi>w</mi> <msub> <mi>V</mi> <mn>0</mn> </msub> <msup> <mi>e</mi> <mrow> <mi>i</mi> <mi>w</mi> <mi>t</mi> </mrow> </msup> </mrow> </semantics></math>, where <math display="inline"><semantics> <mi>α</mi> </semantics></math> is the constant that converts applied electrical voltage to mechanical force. The force actuates the two prongs of the tuning fork, and the geometrical displacement of the two prongs <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>−</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </semantics></math> induces the electrical current <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>=</mo> <mi>β</mi> <msub> <mi>x</mi> <mi>m</mi> </msub> </mrow> </semantics></math>, where <math display="inline"><semantics> <mi>β</mi> </semantics></math> is the converting factor. In addition, the input voltage induces the stray capacitance current <math display="inline"><semantics> <msub> <mi>I</mi> <mi>c</mi> </msub> </semantics></math>. The measured current <math display="inline"><semantics> <msub> <mi>I</mi> <mi>e</mi> </msub> </semantics></math> is given by the sum of the motion-induced current and the stray capacitance current, that is, <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mi>e</mi> </msub> <mo>=</mo> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>I</mi> <mi>c</mi> </msub> </mrow> </semantics></math> (see the text for details).</p> "> Figure 5
<p>Two constants <math display="inline"><semantics> <msub> <mi>U</mi> <mn>1</mn> </msub> </semantics></math> (<b>a</b>, Equation (<a href="#FD11-sensors-19-02686" class="html-disp-formula">11</a>)) and <math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math> (<b>b</b> Equation (<a href="#FD12-sensors-19-02686" class="html-disp-formula">12</a>)) derived from the electromechanical model (<a href="#sensors-19-02686-f004" class="html-fig">Figure 4</a>) for the electrically driven tuning fork and the qPlus sensor. Although the qPlus and its original bare tuning fork exhibit very different dynamic characteristics (<a href="#sensors-19-02686-f003" class="html-fig">Figure 3</a>), the two constants <math display="inline"><semantics> <msub> <mi>U</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>U</mi> <mn>2</mn> </msub> </semantics></math>, made of their combinations, show almost similar values for qPlus and tuning fork, as expected from our model (<a href="#sensors-19-02686-f004" class="html-fig">Figure 4</a>).</p> ">
Abstract
:1. Introduction
2. Experiment
3. Theory and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Garcia, R.; Pérez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 2002, 47, 197–301. [Google Scholar] [CrossRef]
- Giessibl, F.J. Advances in atomic force microscopy. Rev. Mod. Phys. 2003, 75, 949–983. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Jhe, W. General theory of amplitude-modulation atomic force microscopy. Phys. Rev. Lett. 2006, 97, 036104. [Google Scholar] [CrossRef] [PubMed]
- Voigtländer, B. Scanning Probe Microscopy; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Nony, L.; Boisgard, R.; Aimé, J.P. Nonlinear dynamical properties of an oscillating tip-cantilever system in the tapping mode. J. Chem. Phys. 1999, 111, 1615–1627. [Google Scholar] [CrossRef]
- Bhushan, B.; Kawata, S.; Fuchs, H. Applied Scanning Probe Methods V. NanoScience and Technology; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Thornton, S.T.; Marion, J.B. Classical Dynamics of Particles and Systems, 5th ed.; Cengage Learning: Boston, MA, USA, 2008. [Google Scholar]
- Lozano, J.R.; Garcia, R. Theory of multifrequency atomic force microscopy. Phys. Rev. Lett. 2008, 100, 076102. [Google Scholar] [CrossRef] [PubMed]
- Oria, R.; Otero, J.; González, L.; Botaya, L.; Carmona, M.; Puig-Vidal, M. Finite element analysis of electrically excited quartz tuning fork devices. Sensors 2013, 13, 7156–7169. [Google Scholar] [CrossRef] [PubMed]
- Giessibl, F.J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 1998, 73, 3956. [Google Scholar] [CrossRef]
- Giessibl, F.J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019, 90, 011101. [Google Scholar] [CrossRef]
- Lee, M.; Jahng, J.; Kim, K.; Jhe, W. Quantitative atomic force measurement with a quartz tuning fork. Appl. Phys. Lett. 2007, 91, 023117. [Google Scholar] [CrossRef]
- Morita, S.; Giessibl, F.; Wiesendanger, R. (Eds.) Noncontact Atomic Force Microscopy; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Zelenka, J. Piezoelectric Resonators and their Applications; Elsevier: New York, NY, USA, 1986. [Google Scholar]
- Edwards, H.; Taylor, L.; Duncan, W.; Melmed, A.J. Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor. J. Appl. Phys. 1997, 82, 980–984. [Google Scholar] [CrossRef] [Green Version]
- Giessibl, F.J. Atomic resolution on Si(111)-(7x7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 2000, 76, 1470. [Google Scholar] [CrossRef]
- Karrai, K.; Grober, R.D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 1995, 66, 1842. [Google Scholar] [CrossRef]
- Seo, Y.; Hwang, C.S.; Jhe, W. Electrostatic force microscopy using a quartz tuning fork. Appl. Phys. Lett. 2002, 80, 4324. [Google Scholar] [CrossRef]
- Kim, K.; Seo, Y.; Jang, H.; Chang, S.; Hong, M.-H.; Jhe, W. Shear-mode magnetic force microscopy with a quartz tuning fork in ambient conditions. Nanotechnology 2006, 17, S201. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, O.E.; Miyahara, Y.; Mascaro, A.; Enright, T.; Grütter, P. Amplitude dependence of resonance frequency and its consequences for scanning probe microscopy. arXiv 2018, arXiv:1812.08818. [Google Scholar]
- Dagdeviren, O.E.; Miyahara, Y.; Mascaro, A.; Grütter, P. Calibration of the oscillation amplitude of electrically excited scanning probe microscopy sensors. Rev. Sci. Instrum. 2019, 90, 013703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naber, A. The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy. J. Microsc. 1999, 194, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gomez, A.; Agrait, N.; Rubio-Bollinger, G. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy. Ultramicroscopy 2011, 111, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Labardi, M.; Lucchesi, M. Split quartz tuning fork sensors for enhanced sensitivity force detection. Meas. Sci. Technol. 2015, 26, 035101. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Agrait, N.; Rubio-Bollinger, G. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 2009, 20, 215502. [Google Scholar] [CrossRef]
- Simon, G.H.; Heyde, M.; Rust, H.-P. Recipes for cantilever parameter determination in dynamic force spectroscopy: Spring constant and amplitude. Nanotechnology 2007, 18, 255503. [Google Scholar] [CrossRef]
- Kim, B.; Jahng, J.; Khan, R.M.; Park, S.; Potma, E.O. Eigenmodes of a quartz tuning fork and their application to photoinduced force microscopy. Phys. Rev. B 2017, 95, 075440. [Google Scholar] [CrossRef] [Green Version]
- Jahng, J.; Potma, E.O.; Lee, E.S. Tip-enhanced thermal expansion force for nanoscale chemical imaging and spectroscopy in photoinduced force microscopy. Anal. Chem. 2018, 90, 11054–11061. [Google Scholar] [CrossRef] [PubMed]
- Giessibl, F.J.; Pielmeier, F.; Eguchi, T.; An, T.; Hasegawa, Y. Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 2011, 84, 125409. [Google Scholar] [CrossRef]
- Melcher, J.; Stirling, J.; Shaw, G.A. A simple method for the determination of qPlus sensor spring constants. Beilstein J. Nanotechnol. 2015, 6, 1733–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Kim, B.; An, S.; Jhe, W. Dynamic Responses of Electrically Driven Quartz Tuning Fork and qPlus Sensor: A Comprehensive Electromechanical Model for Quartz Tuning Fork. Sensors 2019, 19, 2686. https://doi.org/10.3390/s19122686
Lee M, Kim B, An S, Jhe W. Dynamic Responses of Electrically Driven Quartz Tuning Fork and qPlus Sensor: A Comprehensive Electromechanical Model for Quartz Tuning Fork. Sensors. 2019; 19(12):2686. https://doi.org/10.3390/s19122686
Chicago/Turabian StyleLee, Manhee, Bongsu Kim, Sangmin An, and Wonho Jhe. 2019. "Dynamic Responses of Electrically Driven Quartz Tuning Fork and qPlus Sensor: A Comprehensive Electromechanical Model for Quartz Tuning Fork" Sensors 19, no. 12: 2686. https://doi.org/10.3390/s19122686
APA StyleLee, M., Kim, B., An, S., & Jhe, W. (2019). Dynamic Responses of Electrically Driven Quartz Tuning Fork and qPlus Sensor: A Comprehensive Electromechanical Model for Quartz Tuning Fork. Sensors, 19(12), 2686. https://doi.org/10.3390/s19122686