Classification of Tea Aromas Using Multi-Nanoparticle Based Chemiresistor Arrays
<p>(<b>A</b>) Sensing experimental setup with the electronic nose sensor chip; (<b>B</b>) schematic illustration of the sensor chip, microelectrode features, and gold nanoparticle core-shell structure.</p> "> Figure 2
<p>SEM images after drop-casting deposition of 3-mercaptopropionic acid functionalized gold nanoparticles (MPA-AuNP).</p> "> Figure 3
<p>(<b>A</b>) Real-time sensor response profiles for Earl Grey (black tea), Matcha (green tea), and Bengal Spice<sup>®</sup> (herbal tea) for one sensor element with DMAP-AuNP; (<b>B</b>) Baseline resistance and sensor response variation among four types of organo-capped gold nanoparticles toward Black Cherry Berry (herbal tea).</p> "> Figure 4
<p>PCA plots of (<b>A</b>) eight black teas and five green teas, and (<b>B</b>) 22 herbal teas analyzed with the same sensor chip using four types of monolayer protected nanoparticles.</p> "> Figure 5
<p>LDA plots of (<b>A</b>) eight black tea analytes and five green tea analytes and (<b>B</b>) 22 herbal tea analytes on the same chip assembled with four types of functionalized gold nanoparticles (38 devices). Confusion matrix shows (<b>C</b>) 100% classification accuracy for black teas and green teas, and 97.7% for (<b>D</b>) herbal teas.</p> "> Figure 6
<p>(<b>A</b>) Baseline resistance of four sensor elements with different monolayer protected nanoparticles on the same chip during a five-day experiment. (<b>B</b>) Sensing responses toward Irish Breakfast Tea.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Tea Analytes
2.2. Synthesis of Nanoparticles
2.3. Fabrication of Sensor Arrays
2.4. Aroma Sensing Experiments
2.5. Data Analysis
3. Results
3.1. Sensor Response Profiles
3.2. Sensor Performance and Classification Accuracy
3.3. Sensor Stability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weisburger, J.H. Tea and health: A historical perspective. Cancer Lett. 1997, 114, 315–317. [Google Scholar] [CrossRef]
- Ravikumar, C. Review on herbal teas. J. Pharm. Sci. Res. 2014, 6, 236. [Google Scholar]
- Aoshima, H.; Hirata, S.; Ayabe, S. Antioxidative and anti-hydrogen peroxide activities of various herbal teas. Food Chem. 2007, 103, 617–622. [Google Scholar] [CrossRef]
- Kumar, A.; Nair, A.G.C.; Reddy, A.V.R.; Garg, A.N. Analysis of essential elements in Pragya-peya—A herbal drink and its constituents by neutron activation. J. Pharm. Biomed. Anal. 2005, 37, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Nash, L.A.; Ward, W.E. Tea and bone health: Findings from human studies, potential mechanisms, and identification of knowledge gaps. Crit. Rev. Food Sci. Nutr. 2017, 57, 1603–1617. [Google Scholar] [CrossRef] [PubMed]
- Sanlier, N.; Gokcen, B.B.; Altuğ, M. Tea consumption and disease correlations. Trends Food Sci. Technol. 2018, 78, 95–106. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phyther. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phyther. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Graboski, A.M.; Galvagni, E.; Manzoli, A.; Shimizu, F.M.; Zakrzevski, C.A.; Weschenfelder, T.A.; Steffens, J.; Steffens, C. Lab-made electronic-nose with polyaniline sensor array used in classification of different aromas in gummy candies. Food Res. Int. 2018, 113, 309–315. [Google Scholar] [CrossRef]
- Wang, B.; Han, J.; Bender, M.; Hahn, S.; Seehafer, K.; Bunz, U.H.F. Poly(para-phenyleneethynylene)-sensor arrays discriminate 22 different teas. ACS Sens. 2018, 3, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Dasary, S.S.R.; Singh, A.K.; Senapati, D.; Yu, H.; Ray, P.C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.B.; Roy, R.B.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Black tea classification employing feature fusion of E-Nose and E-Tongue responses. J. Food Eng. 2019, 244, 55–63. [Google Scholar] [CrossRef]
- Fu, K.; Willis, B.G. Characterization of DNA as a solid-state sorptive vapor sensing material. Sens. Actuators B Chem. 2015, 220, 1023–1032. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Ghosh, S.; Narjinary, M.; Bhattacharyya, N.; Bandyopadhyay, R. Tin oxide based gas sensor array in electronic nose to monitor aroma of black tea. Sens. Lett. 2016, 112, 2739–2779. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, J.; Chen, Z.; Lin, H.; Zhao, D.A. Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sens. Actuators B Chem. 2011, 159, 294–300. [Google Scholar] [CrossRef]
- Potyrailo, R.A. Toward high value sensing: Monolayer-protected metal nanoparticles in multivariable gas and vapor sensors. Chem. Soc. Rev. 2017, 46, 5311–5346. [Google Scholar] [CrossRef]
- Peveler, W.J.; Yazdani, M.; Rotello, V.M. Selectivity and specificity: Pros and cons in sensing. ACS Sens. 2016, 1, 1282–1285. [Google Scholar] [CrossRef]
- Hubble, L.J.; Cooper, J.S.; Sosa-Pintos, A.; Kiiveri, H.; Chow, E.; Webster, M.S.; Wieczorek, L.; Raguse, B. High-throughput fabrication and screening improves gold nanoparticle chemiresistor sensor performance. ACS Comb. Sci. 2015, 17, 120–129. [Google Scholar] [CrossRef]
- Kahn, N.; Lavie, O.; Paz, M.; Segev, Y.; Haick, H. Dynamic nanoparticle-based flexible sensors: Diagnosis of ovarian carcinoma from exhaled breath. Nano Lett. 2015, 15, 7023–7028. [Google Scholar] [CrossRef] [PubMed]
- Wohltjen, H.; Snow, A.W. Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal. Chem. 1998, 70, 2856–2859. [Google Scholar] [CrossRef]
- Dovgolevsky, E.; Konvalina, G.; Tisch, U.; Haick, H. Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres. J. Phys. Chem. C 2010, 114, 14042–14049. [Google Scholar] [CrossRef]
- Moreno, M.; Ibañez, F.J.; Jasinski, J.B.; Zamborini, F.P. Hydrogen reactivity of palladium nanoparticles coated with mixed monolayers of alkyl thiols and alkyl amines for sensing and catalysis applications. J. Am. Chem. Soc. 2011, 133, 4389–4397. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Wang, Y.; Luo, Y.; Zhang, C.; Pittman, Z.; Oliveira, A.; Craig, H.; Zhao, J.; Willis, B.G. Fast and reversible chemiresistive sensors for robust detection of organic vapors using oleylamine-functionalized palladium nanoparticles. Int. J. High Speed Electron. Syst. 2018, 27, 1840027. [Google Scholar] [CrossRef]
- Fu, K.; Li, S.; Jiang, X.; Wang, Y.; Willis, B.G. DNA gold nanoparticle nanocomposite films for chemiresistive vapor sensing. Langmuir 2013, 29, 14335–14343. [Google Scholar] [CrossRef]
- Fu, K.; Pedrick, W.; Wang, H.; Lamarche, A.; Jiang, X.; Willis, B.G.; Li, S.; Wang, Y. Polynucleotide-functionalized gold nanoparticles as chemiresistive vapor sensing elements. In Proceedings of the IEEE Sensors, Baltimore, MD, USA, 3–6 November 2013. [Google Scholar]
- Krasteva, N.; Guse, B.; Besnard, I.; Yasuda, A.; Vossmeyer, T. Gold nanoparticle/PPI-dendrimer based chemiresistors—Vapor-sensing properties as a function of the dendrimer size. Sens. Actuators B Chem. 2003, 92, 137–143. [Google Scholar] [CrossRef]
- Choi, J.P.; Coble, M.M.; Branham, M.R.; DeSimone, J.M.; Murray, R.W. Dynamics of CO2-plasticized electron transport in au nanoparticle films: Opposing effects of tunneling distance and local site mobility. J. Phys. Chem. C 2007, 111, 3778–3785. [Google Scholar] [CrossRef]
- Fu, K.; Chen, S.; Zhao, J.; Willis, B.G. Dielectrophoretic assembly of gold nanoparticles in nanoscale junctions for rapid, miniature chemiresistor vapor sensors. ACS Sens. 2016, 1, 444–450. [Google Scholar] [CrossRef]
- Ibañez, F.J.; Zamborini, F.P. Chemiresistive sensing with chemically modified metal and alloy nanoparticles. Small 2012, 8, 174–202. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Gittins, D.I.; Caruso, F. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 2001, 40, 3001–3004. [Google Scholar] [CrossRef]
- Chen, S.; Jenkins, S.V.; Tao, J.; Zhu, Y.; Chen, J. Anisotropic seeded growth of Cu-M (M = Au, Pt, or Pd) bimetallic nanorods with tunable optical and catalytic properties. J. Phys. Chem. C 2013, 117, 8924–8932. [Google Scholar] [CrossRef]
- Garg, N.; Mohanty, A.; Lazarus, N.; Schultz, L.; Rozzi, T.R.; Santhanam, S.; Weiss, L.; Snyder, J.L.; Fedder, G.K.; Jin, R. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors. Nanotechnology 2010, 21, 405501. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.S.; Raguse, B.; Chow, E.; Hubble, L.; Müller, K.H.; Wieczorek, L. Gold nanoparticle chemiresistor sensor array that differentiates between hydrocarbon fuels dissolved in artificial seawater. Anal. Chem. 2010, 82, 3788–3795. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.; Salmi, Z.; Dahoumane, S.A.; Mekki, A.; Carbonnier, B.; Chehimi, M.M. Functionalization of nanomaterials with aryldiazonium salts. Adv. Colloid Interface Sci. 2015, 225, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Orefuwa, S.A.; Ravanbakhsh, M.; Neal, S.N.; King, J.B.; Mohamed, A.A. Robust organometallic gold nanoparticles. Organometallics 2014, 33, 439–442. [Google Scholar] [CrossRef]
- Overton, A.T.; Mohamed, A.A. Gold(III) diazonium complexes for electrochemical reductive grafting. Inorg. Chem. 2012, 51, 5500–5502. [Google Scholar] [CrossRef]
- Goss, C.A.; Charych, D.H.; Majda, M. Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates. Anal. Chem. 1991, 63, 85–88. [Google Scholar] [CrossRef]
- Barsotti, R.J.; Vahey, M.D.; Wartena, R.; Chiang, Y.M.; Voldman, J.; Stellacci, F. Assembly of metal nanoparticles into nanogaps. Small 2007, 3, 488–499. [Google Scholar] [CrossRef]
- Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Cross-reactive chemical sensor arrays. Chem. Rev. 2000, 100, 2595–2626. [Google Scholar] [CrossRef] [PubMed]
- Kummer, A.M.; Hierlemann, A.; Baltes, H. Tuning sensitivity and selectivity of complementary metal oxide semiconductor-based capacitive chemical microsensors. Anal. Chem. 2004, 76, 2470–2477. [Google Scholar] [CrossRef] [PubMed]
- Grate, J.W.; Nelson, D.A.; Skaggs, R. Sorptive behavior of monolayer-protected gold nanoparticle films: Implications for chemical vapor sensing. Anal. Chem. 2003, 75, 1868–1879. [Google Scholar] [CrossRef] [PubMed]
- Grate, J.W.; Patrash, S.J.; Abraham, M.H. Method for estimating polymer-coated acoustic wave vapor sensor responses. Anal. Chem. 1995, 67, 2162–2169. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Nallon, E.C.; Schnee, V.P.; Bright, C.; Polcha, M.P.; Li, Q. Chemical discrimination with an unmodified graphene chemical sensor. ACS Sens. 2016, 1, 26–31. [Google Scholar] [CrossRef]
- Jurs, P.C.; Bakken, G.A.; McClelland, H.E. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 2000, 100, 2649–2678. [Google Scholar] [CrossRef]
Category | Flavor | Main Ingredient |
---|---|---|
Black tea | English Breakfast a | Black tea |
Irish Breakfast a | Black tea | |
Earl Grey a | Black tea, bergamot flavor | |
Lady Grey a | Black tea, orange peel, lemon peel | |
China Standard b | Black tea | |
Formosa b | Black tea | |
Keemun Congou b | Black tea | |
Nilgiri b | Black tea | |
Honey Lemon Ginseng c | Green tea, white tea, eleuthero | |
Matcha c | Green tea, organic matcha | |
Green tea | China Sencha b | Green tea |
Gunpowder b | Green tea | |
Young Hyson b | Green tea | |
Herbal tea | Almond SunsetTM c | Roasted carob, roasted barley, roasted chicory |
Bengal Spice® c | Cinnamon, roasted chicory, roasted carob | |
Black Cherry Berry c | Hibiscus, rosehips, roasted chicory | |
Caramel Apple Dream® c | Cinnamon, hibiscus, natural caramel and apple | |
Chamomile c | Chamomile | |
Cinnamon Apple Spice c | Cinnamon, hibiscus, chamomile | |
Country Peach Passion® c | Orange peel, rosehips, hawthorn | |
Honey Vanilla Chamomile c | Chamomile, orange peel, natural honey flavor | |
Jammin’ Lemon Ginger c | Ginger, lemon verbena, lemongrass | |
Lemon Lavender LaneTM c | Lemongrass, lemon verbena, lavender | |
Lemon Zinger® c | Hibiscus, rosehips, roasted chicory | |
Peppermint c | Peppermint | |
Raspberry Zinger® c | Hibiscus, rosehips, roasted chicory | |
Roastaroma® c | Roasted barley, roasted chicory, roasted carob | |
Sangria Zinger® c | Hibiscus, rosehips, orange peel | |
Sleepytime® c | Chamomile, spearmint, lemongrass | |
Tangerine Orange Zinger® c | Hibiscus, rosehips, blackberry leaves | |
Tension Tamer® c | Eleuthero, peppermint, cinnamon | |
True Blueberry® c | Hibiscus, rosehips, orange peel | |
Vermont Maple GingerTM c | Ginger, cinnamon, natural maple flavor | |
Watermelon Lime Zinger® c | Hibiscus, rosehips, orange peel | |
Wild Berry Zinger® c | Hibiscus, rosehips, roasted chicory |
AuNP | Number of Working Devices | Accuracy (%) | |
---|---|---|---|
Black and Green Tea | Herbal Tea | ||
DMAP | 10 | 97.1 | 75.0 |
ODA | 11 | 77.9 | 77.8 |
MPA | 8 | 52.9 | 52.8 |
ATP | 9 | 53.8 | 43.8 |
Overall | 38 | 100 | 97.7 |
Day | LDA (%) | SVM (%) | KNN (%) | RF (%) |
---|---|---|---|---|
1 | 100 | 97.1 | 93.3 | 99.7 |
2 | 96.2 | 97.1 | 98.1 | 99.7 |
3 | 90.4 | 88.5 | 87.5 | 98.6 |
4 | 86.5 | 91.3 | 88.5 | 98.9 |
5 | 97.1 | 98.1 | 97.1 | 99.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, T.; Wang, Y.; Zhang, C.; Pittman, Z.A.; Oliveira, A.M.; Fu, K.; Zhao, J.; Srivastava, R.; Willis, B.G. Classification of Tea Aromas Using Multi-Nanoparticle Based Chemiresistor Arrays. Sensors 2019, 19, 2547. https://doi.org/10.3390/s19112547
Gao T, Wang Y, Zhang C, Pittman ZA, Oliveira AM, Fu K, Zhao J, Srivastava R, Willis BG. Classification of Tea Aromas Using Multi-Nanoparticle Based Chemiresistor Arrays. Sensors. 2019; 19(11):2547. https://doi.org/10.3390/s19112547
Chicago/Turabian StyleGao, Tuo, Yongchen Wang, Chengwu Zhang, Zachariah A. Pittman, Alexandra M. Oliveira, Kan Fu, Jing Zhao, Ranjan Srivastava, and Brian G. Willis. 2019. "Classification of Tea Aromas Using Multi-Nanoparticle Based Chemiresistor Arrays" Sensors 19, no. 11: 2547. https://doi.org/10.3390/s19112547
APA StyleGao, T., Wang, Y., Zhang, C., Pittman, Z. A., Oliveira, A. M., Fu, K., Zhao, J., Srivastava, R., & Willis, B. G. (2019). Classification of Tea Aromas Using Multi-Nanoparticle Based Chemiresistor Arrays. Sensors, 19(11), 2547. https://doi.org/10.3390/s19112547