A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage
<p>Spectral power density of the SC light source integrated into the gas sensor.</p> "> Figure 2
<p>(<b>A</b>) Simplified schematic representation of the optical setup (M: mirror, BS: beam splitter, PD: photodetector). (<b>B</b>) Top view of the optical system. Note that the primary SC beam (highlighted in green) is split into the measurement (blue) and reference (red) beams.</p> "> Figure 3
<p>(<b>A</b>) Overview of the transportable and integrated gas sensing platform. (<b>B</b>) Schematic overview of the gas handling system.</p> "> Figure 4
<p>The reference absorbance (base-10) database at 1 ppmv level, including the targeted gas species. Note that water absorbance is inverted and re-scaled for clarity.</p> "> Figure 5
<p>Procedure overview of a two-stage global fitting method for concentration calculation.</p> "> Figure 6
<p>Comparison of the obtained concentration values using the optical method (red) and the TD-GC-MS method (green).</p> "> Figure 7
<p>Time-dependent representation of the obtained concentration values of multiple gas species based on the same pear-storage container. The breaking of the time axis is due to an alternating operation configuration to measure two different storage containers. For clarity purposes, the data of the other container are not shown.</p> "> Figure 8
<p>Measured (grey) and fitted (red) absorbance spectra associated with the first (<b>A</b>) and last (<b>B</b>) concentration data points in <a href="#sensors-19-02334-f007" class="html-fig">Figure 7</a>. The residuals are included on the bottom. The green square in (<b>B</b>) highlights an increased ethanol concentration. A Savitzky–Golay filter is applied in the 2725–2821 cm<sup>−1</sup> window in order to minimize the etalon effect due to optical elements.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Targeted Volatile Species
2.2. The Supercontinuum Light Source
2.3. The Optical Setup
2.4. The Integrated System
2.5. Real-Time Data Analysis
2.6. Pear Storage and TD-GC-MS Analysis of Storage Atmosphere Volatiles
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Otterdijk, R.; Meybec, A. Global Food Losses and Food Waste, Study Conducted for the International Congress at Interpack 2011. Food and Agriculture Organization (FAO) of the United Nations, 2011. Available online: http://www.fao.org/3/mb060e/mb060e.pdf (accessed on 22 March 2019).
- Bessemans, N.; Verboven, P.; Verlinden, B.E.; Nicolai, B.M. A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA). Postharvest Biol. Tec. 2016, 115, 91–102. [Google Scholar] [CrossRef]
- Mditshwa, A.; Fawole, O.A.; Opara, U.L. Recent developments on dynamic controlled atmosphere storage of apples-A review. Food Packag. Shelf Life 2018, 16, 59–68. [Google Scholar] [CrossRef]
- Brumfield, B.E.; Phillips, M.C. Quantitative isotopic measurements of gas-phase alcohol mixtures using a broadly tunable swept external cavity quantum cascade laser. Analyst 2017, 142, 2354–2362. [Google Scholar] [CrossRef] [PubMed]
- Tomberg, T.; Vainio, M.; Hieta, T.; Halonen, L. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy. Sci. Rep. 2018, 8, 1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cropper, P.M.; Eatough, D.J.; Overson, D.K.; Hansen, J.C.; Caka, F.; Cary, R.A. Use of a gas chromatography-mass spectrometry organic aerosol monitor for in-field detection of fine particulate organic compounds in source apportionment. J. Air Waste Manage. Ass. 2018, 68, 390–402. [Google Scholar] [CrossRef]
- Kwan, M.W.C.; Weisenseel, J.P.; Giel, N.; Bosak, A.; Batich, C.D.; Willenberg, B.J. Detection and quantification of trace airborne transfluthrin concentrations via air sampling and thermal desorption gas chromatography-mass spectrometry. J. Chromatogr. A 2018, 1573, 156–160. [Google Scholar] [CrossRef]
- Wojnowski, W.; Dymerski, T.; Gebicki, J.; Namieśnik, J. Electronic Noses in Medical Diagnostics. Curr. Med. Chem. 2019, 26, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mucke, R.; Janker, B. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Laser Eng. 2002, 37, 101–114. [Google Scholar] [CrossRef]
- Vainio, M.; Halonen, L. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 4266–4294. [Google Scholar] [CrossRef]
- Schliesser, A.; Picque, N.; Hansch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Petersen, C.R.; Møller, U.; Kubat, I.; Zhou, B.B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z.Q.; et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830–834. [Google Scholar] [CrossRef]
- Martinez, R.A.; Plant, G.; Guo, K.W.; Janiszewski, B.; Freeman, M.J.; Maynard, R.L.; Islam, M.N.; Terry, F.L.; Alvarez, O.; Chenard, F.; et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers. Opt. Lett. 2018, 43, 296–299. [Google Scholar] [CrossRef]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef]
- Ycas, G.; Giorgetta, F.R.; Baumann, E.; Coddington, I.; Herman, D.; Diddams, S.A.; Newbury, N.R. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics 2018, 12, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Khodabakhsh, A.; Ramaiah-Badarla, V.; Rutkowski, L.; Johansson, A.C.; Lee, K.F.; Jiang, J.; Mohr, C.; Fermann, M.E.; Foltynowicz, A. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 μm. Opt. Lett. 2016, 41, 2541–2544. [Google Scholar] [CrossRef]
- Abeles, F.; Morgan, P.; Saltveit, M. Ethylene in Plant Biology, 2nd ed.; Academic Press Inc.: San Diego, CA, USA, 2012; pp. 182–213. [Google Scholar]
- Veltman, R.H.; Sanders, M.G.; Persijn, S.T.; Peppelenbos, H.W.; Oosterhaven, J. Decreased ascorbic acid levels and brown core development in pears (Pyrus communis L. cv. Conference). Physiol Plantarum 1999, 107, 39–45. [Google Scholar] [CrossRef]
- Fonseca, S.C.; Oliveira, F.A.R.; Brecht, J.K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Costello, B.P.J.; Ewen, R.J.; Gunson, H.E.; Ratcliffe, N.M.; Spencer-Phillips, P.T.N. The development of a sensor system for the early detection of soft rot in stored potato tubers. Meas. Sci. Technol. 2000, 11, 1685–1691. [Google Scholar] [CrossRef]
- Heidt, A.M.; Hartung, A.; Bosman, G.W.; Krok, P.; Rohwer, E.G.; Schwoerer, H.; Bartelt, H. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers. Opt. Express 2011, 19, 3775–3787. [Google Scholar] [CrossRef]
- Petersen, C.R.; Moselund, P.M.; Huot, L.; Hooper, L.; Bang, O. Towards a table-top synchrotron based on supercontinuum generation. Infrared Phys. Techn. 2018, 91, 182–186. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Rad. Trans. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.J.; Profeta, L.T.M.; Sams, R.L.; Griffith, D.W.T.; Yokelson, R.L. An infrared spectral database for detection of gases emitted by biomass burning. Vib. Spectrosc. 2010, 53, 97–102. [Google Scholar] [CrossRef]
- Bessemans, N.; Verboven, P.; Verlinden, B.E.; Nicolai, B.M. Model based leak correction of real-time RQ measurement for dynamic controlled atmosphere storage. Postharvest Biol. Tec. 2018, 136, 31–41. [Google Scholar] [CrossRef]
Compound Name | Calibrated Concentration (ppmv) | Diluted Concentration (Expected, ppmv) * | Measured Concentration (ppmv) ** |
---|---|---|---|
Ethylene | 5000 ± 25 | ~19.5 | 19.5 ± 1.73 |
Ethanol | 100 ± 0.5 | ~0.39 | 1.55 ± 0.38 |
Acetaldehyde | 100 ± 5 | ~0.39 | 1.82 ± 0.64 |
Methanol | 100 ± 1 | ~0.39 | 0.71 ± 0.19 |
Ethyl-acetate | 100 ± 1 | ~0.39 | 0.60 ± 0.10 |
Acetone | 100 ± 0.5 | ~0.39 | 0 |
1-propanol | 100 ± 1 | ~0.39 | N.A. |
2-butanone | 100 ± 5 | ~0.39 | N.A. |
Propylene | 100 ± 1 | ~0.39 | N.A. |
Propionaldehyde | 100 ± 5 | ~0.39 | N.A. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eslami Jahromi, K.; Pan, Q.; Khodabakhsh, A.; Sikkens, C.; Assman, P.; Cristescu, S.M.; Moselund, P.M.; Janssens, M.; Verlinden, B.E.; Harren, F.J.M. A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage. Sensors 2019, 19, 2334. https://doi.org/10.3390/s19102334
Eslami Jahromi K, Pan Q, Khodabakhsh A, Sikkens C, Assman P, Cristescu SM, Moselund PM, Janssens M, Verlinden BE, Harren FJM. A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage. Sensors. 2019; 19(10):2334. https://doi.org/10.3390/s19102334
Chicago/Turabian StyleEslami Jahromi, Khalil, Qing Pan, Amir Khodabakhsh, Cor Sikkens, Paul Assman, Simona M. Cristescu, Peter M. Moselund, Maxime Janssens, Bert E. Verlinden, and Frans J. M. Harren. 2019. "A Broadband Mid-Infrared Trace Gas Sensor Using Supercontinuum Light Source: Applications for Real-Time Quality Control for Fruit Storage" Sensors 19, no. 10: 2334. https://doi.org/10.3390/s19102334