Improved Faster R-CNN Traffic Sign Detection Based on a Second Region of Interest and Highly Possible Regions Proposal Network
<p>Examples of the unideal traffic sign images: (<b>a</b>) motion blur, (<b>b</b>) undesirable light, (<b>c</b>) color fading, (<b>d</b>) and (<b>e</b>) snow, (<b>f</b>) occlusion.</p> "> Figure 2
<p>The processing flow of our method.</p> "> Figure 3
<p>The eight simplified Gabor wavelets (SGW) filters with different parameters. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>ω</mi> <mo>=</mo> <mn>0.3</mn> <mi>π</mi> <mo>;</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">b</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mi>j</mi> </mrow> <mn>4</mn> </mfrac> <mo>,</mo> <mo> </mo> <mi>ω</mi> <mo>=</mo> <mn>0.3</mn> <mi>π</mi> <mo>;</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">c</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mi>j</mi> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <mo> </mo> <mi>ω</mi> <mo>=</mo> <mn>0.3</mn> <mi>π</mi> <mo>;</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">d</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>θ</mi> <mo>=</mo> <mn>3</mn> <mi>π</mi> <mi>j</mi> <mo>/</mo> <mn>4</mn> <mo>,</mo> <mi>ω</mi> <mo>=</mo> <mn>0.3</mn> <mi>π</mi> <mo>;</mo> </mrow> </semantics></math> (<b>e</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> <mo>;</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">f</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mi>j</mi> </mrow> <mn>4</mn> </mfrac> <mo>,</mo> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> <mo> </mo> <mo>;</mo> <mo> </mo> <mrow> <mo>(</mo> <mi mathvariant="bold">g</mi> <mo>)</mo> </mrow> <mo> </mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mi>j</mi> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> <mo>;</mo> </mrow> </semantics></math> and (<b>h</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> <mi>j</mi> </mrow> <mn>4</mn> </mfrac> <mo>,</mo> <mi>ω</mi> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>The sample processing by the SGW wavelets and the synthetize feature map: (<b>i</b>) the input image; (<b>a</b>–<b>h</b>) filtered by kernels corresponding to <a href="#sensors-19-02288-f003" class="html-fig">Figure 3</a>, and (<b>o</b>) synthetize feature map.</p> "> Figure 5
<p>The process of finding the highly possible regions. (<b>A</b>): grayscale image, (<b>B</b>): feature map by synthesis the eight SGW feature maps, (<b>C</b>): maximally stable extremal regions (MSERs) on the frame (A), (<b>D</b>): MSERs on the frame (C).</p> "> Figure 6
<p>Examples of traffic signs with contextual information including other traffic signs, poles, etc.</p> "> Figure 7
<p>Traffic signs with cross-shaped secondary regions of interest.</p> "> Figure 8
<p>The feature combination of the region of interest (ROI) and secondary ROIs (SROIs). The L, T, R, B refers to the <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>R</mi> <mi>L</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>R</mi> <mi>T</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>R</mi> <mi>R</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>S</mi> <msub> <mi>R</mi> <mi>B</mi> </msub> </mrow> </semantics></math>, respectively.</p> "> Figure 9
<p>Examples of subclasses in the German traffic sign detection benchmark (GTSDB) dataset and the Chinese traffic sign dataset (CTSD). Merging the Prohibitory, Danger and Mandatory traffic signs from the two databases into super classes, respectively.</p> "> Figure 10
<p>The process of filtering the ROIs of a faster region with a convolutional neural network (R-CNN) with MSERs. (<b>A</b>): regions proposal by MSERs, (<b>B</b>): anchor points of Faster R-CNN, (<b>C</b>) MSERs and Faster R-CNN coincidence proposal regions, (<b>D</b>): ROI with SROI information.</p> "> Figure 11
<p>Examples of regions proposal by the highly possible regions proposal network (HP-RPN) on a grayscale image and the HP-RPN on an SGW feature map under different situations of traffic scenes. (<b>A</b>): clear and simple traffic scene, (<b>B</b>): complex traffic scene, (<b>C</b>): motion blurred complex traffic scene.</p> "> Figure 12
<p>A histogram of the traffic sign size distribution in the Chinese traffic sign dataset (CTSD).</p> "> Figure 13
<p>A histogram of the traffic sign size distribution in the German traffic sign detection benchmark (GTSDB).</p> "> Figure 14
<p>A histogram of the traffic sign size distribution in the joint GTSDB and CTSD dataset.</p> "> Figure 15
<p>The distribution of aspect ratios of traffic signs. Each blue triangle represents a traffic sign and the orange straight line represents the average aspect ratio of all the traffic signs in the GTSDB and CTSD dataset.</p> "> Figure 16
<p>The Precision-Recall Curves, (<b>A</b>) on small traffic signs, (<b>B</b>) on medium traffic signs, (<b>C</b>) on large traffic signs; the blue lines represent the method of the original Faster R-CNN, the orange lines represent our method without SROIs information support, the gray lines represent our method with SROIs.</p> "> Figure 17
<p>The comparison of the number of anchors of the Faster R-CNN without and with HP-RPN on different databases.</p> "> Figure 18
<p>Example of anchors points of the Faster R-CNN without and with HP-RPN. (<b>A</b>) anchor points of original Faster R-CNN, (<b>B</b>) anchor points of our method.</p> "> Figure 19
<p>The system processing time.</p> "> Figure 20
<p>Examples of detection results. The red box represents the traffic signs mark area in the databases, the green box represents the detected areas.</p> ">
Abstract
:1. Introduction
- Traffic scene images are often subject to motion blur because the images are captured from the camera of a vehicle traveling at a high speed.
- Since vehicle-mounted cameras are not always perpendicular to traffic signs, the shapes of traffic signs are usually distorted in captured images, and the shape of traffic signs in traffic scenes are not always be reliable.
- Some traffic signs are often obscured by other objects in the road, such as trees, pedestrians, other vehicles and so on. Therefore, it is necessary to detect traffic signs with only part of the traffic sign image information.
- The problems of traffic sign discoloration, traffic sign damage, rain, snow, fog, and other factors also produced enormous difficulties in traffic sign detection.
- A highly possible regions proposal network (HP-RPN) for regions filtering is presented, which provides important regional proposal reference information to a modified Faster R-CNN, and filters out most non-traffic sign areas.
- In order to solve the problem of less feature information from small targets in the fifth layer of the VGG16 network, the features of its third, fourth, and fifth layers are fused; which greatly improves the feature expression ability for small target detection.
- The secondary region of interest (SROI) is proposed to introduce structural information other than traffic signs into the detection network, which further improves the detection efficiency.
2. Related Work
2.1. Detection Framework
2.2. Feature Expression
2.3. Databases
3. Overview of Our Method
4. Improved Faster R-CNN
4.1. Highly Possible Regions Proposal Network
4.1.1. Simplified Gabor Filter Model
4.1.2. Maximally Stable Extremal Regions
4.2. Detection Features Enrich
4.2.1. Shallower Layers Feature Fusion
4.2.2. Secondary Region of Interest
4.3. Loss Function
5. Experiments and Analysis
5.1. Experimental Dataset and Computer Environment
5.2. Evaluation Metrics
5.3. Performance of Highly Possible Regions Proposal
5.4. Performance of Detection Features Enrich
5.4.1. The Selection of Bounding Box Scales
5.4.2. Performance of Features Fusion
5.5. Overall Processing Speed and Accuracy
5.5.1. Anchor Filtering
5.5.2. Analysis of Processing Time Consumption
5.5.3. Performance Comparison Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Sun, X.; Wu, P.; Hoi, S.C.H. Face detection using deep learning: An improved faster RCNN approach. Neurocomputing 2018, 299, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ramanan, D. Face detection, pose estimation, and landmark localization in the Wild. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Lin, C.F.; Lin, S.F. Accuracy enhanced thermal face recognition. Infrared Phys. Technol. 2013, 61, 200–207. [Google Scholar] [CrossRef]
- Ananth, C.; Ijar, R. Iris recognition using active contours. Soc. Sci. Electron. Publ. 2017, 2, 27–32. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, C.; Xiao, S. Small object detection in optical remote sensing images via modified faster R-CNN. Appl. Sci. 2018, 8, 813. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In Proceedings of the European Conference on Computer Vision, Cham, Switzerland, 6–12 September 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the CVPR, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S. SSD: Single shot multibox detector. In Proceedings of the ECCV 2016: Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Lu, H.; Yang, M.-H. Bayesian saliency via low and mid level cues. IEEE Trans. Image Process. 2013, 22, 1689–1698. [Google Scholar] [PubMed]
- Qi, W.; Cheng, M.-M.; Borji, A.; Lu, H.; Bai, L.-F. SaliencyRank: Two-stage manifold ranking for salient object detection. Comput. Vis. Media 2015, 1, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yu, Y. Visual saliency based on multiscale deep features. In Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5455–5463. Available online: http://i.cs.hku.hk/ yzyu/ vision.html (accessed on 17 May 2019).
- Hou, Q.; Cheng, M.M.; Hu, X.; Borji, A.; Tu, Z.; Torr, H.S.P. Deeply supervised salient object detection with short connections. IEEE Trans. Patt. Anal. Mach. Intell. 2018, 1. [Google Scholar] [CrossRef]
- Shen, Y.; Ji, R.; Wang, C.; Li, X.; Li, X. Weakly supervised object detection via object-specific pixel gradient. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5960–5970. [Google Scholar] [CrossRef] [PubMed]
- Jingli, G.; Chenglin, W.; Meiqin, L. Robust small target co-detection from airborne infrared image sequences. Sensors 2017, 17, 2242. [Google Scholar]
- Li, H.; Lin, Z.; Shen, X.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5325–5334. [Google Scholar]
- Yang, F.; Choi, W.; Lin, Y. Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2129–2137. [Google Scholar]
- Divvala, S.K.; Hoiem, D.; Hays, J.H.; Efros, A.A.; Hebert, M. An empirical study of context in object detection. In Proceedings of the IEEE Computer Vision and Pattern Recognition, Miami Beach, FL, USA, 20–25 June 2009; pp. 1271–1278. [Google Scholar]
- Zhang, Y.; Mu, Z. Ear Detection under uncontrolled conditions with multiple scale faster region-based convolutional neural networks. Symmetry 2017, 9, 53. [Google Scholar] [CrossRef]
- Bell, S.; Zitnick, C.L.; Bala, K.; Girshick, R. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. arXiv 2015, arXiv:1512.04143. [Google Scholar]
- Zagoruyko, S.; Lerer, A.; Lin, T.-Y.; Pinheiro, P.O.; Gross, S.; Chintala, S.; Dollar, P. A multipath network for object detection. arXiv 2016, arXiv:1604.02135. [Google Scholar]
- Wang, X.; Ma, H.; Chen, X.; Shaodi, Y. Edge preserving and multi-scale contextual neural network for salient object detection. IEEE Trans. Image Process. 2016, 99. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Ilya, S.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Cireşan, D.; Meier, U.; Masci, J.; Schmidhuber, J. A committee of neural networks for traffic sign classification. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011. [Google Scholar]
- Qian, R.; Zhang, B.; Yue, Y.; Wang, Z.; Coenen, F. Robust Chinese traffic sign detection and recognition with deep convolutional neural network. In Proceedings of the 2015 11th International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015; pp. 791–796. [Google Scholar]
- Zhang, J.; Huang, M.; Jin, X.; Li, X. A real-time Chinese traffic sign detection algorithm based on modified YOLOv2. Algorithms 2017, 10, 127. [Google Scholar] [CrossRef]
- Xu, Q.; Su, J.; Liu, T. A detection and recognition method for prohibition traffic signs. In Proceedings of the 2010 International Conference on Image Analysis and Signal Processing, Zhejiang, China, 9–11 April 2010; pp. 583–586. [Google Scholar]
- Zhu, S.; Liu, L.; Lu, X. Color-geometric model for traffic sign recognition. In Proceedings of the Multiconference on Computational Engineering in Systems Applications, Beijing, China, 4–6 October 2006; pp. 2028–2032. [Google Scholar]
- Yang, Y.; Luo, H.; Xu, H.; Wu, F. Towards real-time traffic sign detection and classification. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2022–2031. [Google Scholar] [CrossRef]
- Bai, Y.; Ghanem, B. Multi-branch fully convolutional network for face detection. arXiv 2017, arXiv:1707.06330. [Google Scholar]
- Sheikh, D.M.A.A.; Kole, A.; Maity, T. Traffic sign detection and classification using colour feature and neural network. In Proceedings of the 2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI), Kolkata, India, 21–23 October 2016; pp. 307–311. [Google Scholar]
- Bahlmann, C.; Zhu, Y.; Ramesh, V.; Pellkofer, M.; Koehler, T. A system for traffic sign detection, tracking, and recognition using color, shape, and motion information. In Proceedings of the IEEE Intelligent Vehicles Symposium 2005, Las Vegas, NV, USA, 6–8 June 2005. [Google Scholar]
- Manjunath, B.S.; Ma, W.Y. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 837–842. [Google Scholar] [CrossRef]
- Geisler, W.; Clark, M.; Bovik, A. Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 55–73. [Google Scholar] [CrossRef]
- Jia, L.; Chen, C.; Liang, J.; Hou, Z. Fabric defect inspection based on lattice segmentation and Gabor filtering. Neurocomputing 2017, 238, 84–102. [Google Scholar] [CrossRef]
- Zhang, L.; Tjondronegoro, D.; Chandran, V. Random Gabor based templates for facial expression recognition in images with facial occlusion. Neurocomputing 2014, 145, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Tadic, V.; Popovic, M.; Odry, P. Fuzzified Gabor filter for license plate detection. Eng. Appl. Artif. Intell. 2016, 48, 40–58. [Google Scholar] [CrossRef]
- Pellegrino, F.A.; Vanzella, W.; Torre, V. Edge detection revisited. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34, 1500–1518. [Google Scholar] [CrossRef]
- Mehrotra, R.; Namuduri, K.R.; Ranganathan, N. Gabor filter-based edge detection. Pattern Recognit. 1992, 25, 1479–1494. [Google Scholar] [CrossRef]
- Jiang, W.; Lam, K.; Shen, T. Efficient edge detection using simplified Gabor wavelets. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 1036–1047. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.P.; Tse, S.-H.; Wong, K.-W.; Lam, K.-M. Simplified Gabor wavelets for human face recognition. Pattern Recognit. 2008, 41, 1186–1199. [Google Scholar] [CrossRef]
- Shao, F.; Wang, X.; Meng, F.; Rui, T.; Wang, D.; Tang, J. Real-time Traffic sign detection and recognition method based on simplified Gabor wavelets and CNNs. Sensors 2018, 18, 3192. [Google Scholar] [CrossRef]
- Aghdam, H.H.; Heravi, E.J.; Puig, D. Recognizing traffic signs using a practical deep neural network. In Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing; Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V., Eds.; Springer: Cham, Switzerland, 2016; Volume 417. [Google Scholar]
- Xie, K.; Ge, S.; Ye, Q.; Luo, Z. Traffic sign recognition based on attribute-refinement cascaded convolutional neural networks. In Proceedings of the Pacific Rim Conference on Multimedia, Xi’an, China, 15–16 September 2016; Springer: Cham, Switzerland, 2016; pp. 201–210. [Google Scholar]
- Chang, S.-Y.; Morgan, N. Robust CNN-based speech recognition with Gabor filter kernels. In Proceedings of the INTERSPEECH-2014, 15th Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014; pp. 905–909. [Google Scholar]
- Mcilhagga, W. The canny edge detector revisited. Int. J. Comput. Vis. 2011, 91, 251–261. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z. Real-time traffic sign recognition based on efficient CNNs in the wild. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1–10. [Google Scholar]
- Creusen, I.M.; Wijnhoven, R.G.J.; Herbschleb, E.; de With, P.H.N. Color exploitation in hog-based traffic sign detection. In Proceedings of the IEEE International Conference on Image Processing, Hongkong, China, 26–29 September 2010. [Google Scholar]
- Igel, C. Detection of traffic signs in real-world images: The German traffic sign detection benchmark. In Proceedings of the International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013. [Google Scholar]
CTSD | GTSDB | GTSDB + CTSD | ||
---|---|---|---|---|
Grayscale + MSERs | Average number of proposals | 321 | 388 | 343 |
ROI with MSERs | 99 | 118 | 105 | |
FNs, Recall | 10, 98.12% | 8, 97.1% | 18, 97.76% | |
Time (ms/image) | 38 | 40 | 38.8 | |
SGW Map + MSERs | Average number of proposals | 178 | 276 | 211 |
ROI with MSERs | 56 | 83 | 65 | |
FNs, Recall | 2, 99.62% | 1, 99.63% | 3, 99.63% | |
Time (ms/image) | 41 | 46 | 43 |
Method | Anchor Scale (Pixels) | mAP% | ROI | Feature Layers | HP-RPN | ||
---|---|---|---|---|---|---|---|
Small | Medium | Large | |||||
Faster R-CNN | {1282 2562 5122} | 12.11% | 15.19% | 34.12% | ROI | Conv_5 | No |
{642 1282 2562} | 15.80% | 16.25% | 37.57% | ROI | Conv_5 | No | |
{162 642 1282} | 16.53% | 28.31% | 38.63% | ROI | Conv_5 | No | |
Our Approach | {1282 2562 5122} | 37.53% | 48.22% | 59.35% | ROI | Conv_3_4_5 | Yes |
{642 1282 2562} | 43.15% | 51.47% | 60.56% | ROI | Conv_3_4_5 | Yes | |
{162 642 1282} | 60.55% | 62.17% | 62.56% | ROI | Conv_3_4_5 | Yes | |
{162 642 1282} | 66.55% | 67.17% | 69.56% | SROI + ROI | Conv_3_4_5 | Yes |
Method | Number of Multiplications | Number of Addition |
---|---|---|
TGW | ||
Canny | ||
SGW |
Database | Small | Medium | Large | Total | Region | Feature Layer |
---|---|---|---|---|---|---|
GTSDB | 58.26% | 70.37% | 84.21% | 66.67% | ROI | Conv_5 |
CTSD | 54.74% | 71.66% | 83.16% | 72.74% | ROI | Conv_5 |
GTSDB | 61.05% | 80.16% | 93.68% | 81.58% | ROI+SROI | Conv_5 |
CTSD | 64.57% | 78.70% | 94.73% | 74.36% | ROI+SROI | Conv_5 |
GTSDB | 89.76% | 89.81% | 86.84% | 86.81% | ROI | Conv_3_4_5 |
CTSD | 86.32% | 86.64% | 88.42% | 86.27% | ROI | Conv_3_4_5 |
GTSDB | 96.85% | 100% | 100% | 98.53% | SROI + ROI | Conv_3_4_5 |
CTSD | 93.68% | 99.60% | 100% | 98.68% | SROI + ROI | Conv_3_4_5 |
Method | Database | Prohibitory | Mandatory | Danger | Total | Time(s) |
---|---|---|---|---|---|---|
Reference [53] | GTSDB | 99.63% | 91.33% | 96.08% | 97.32% | - |
Reference [34] | CTSD | 97.38% | 95.57% | 98.16% | 97.10% | 0.162 |
Reference [54] | GTSDB | 98.88% | 74.6% | 67.3% | 87.23% | - |
Reference [52] | GTSDB | 96% | 100% | 100% | 97.44% | 0.130 |
Our Method | GTSDB | 98.76% | 97.96% | 98.41% | 98.53% | 0.111 |
Our Method | CTSD | 99.24% | 97.84% | 98.45% | 98.68% | 0.106 |
Our Method | GTSDB + CTSD | 99.53% | 98.40% | 98.44% | 99.01% | 0.108 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, F.; Wang, X.; Meng, F.; Zhu, J.; Wang, D.; Dai, J. Improved Faster R-CNN Traffic Sign Detection Based on a Second Region of Interest and Highly Possible Regions Proposal Network. Sensors 2019, 19, 2288. https://doi.org/10.3390/s19102288
Shao F, Wang X, Meng F, Zhu J, Wang D, Dai J. Improved Faster R-CNN Traffic Sign Detection Based on a Second Region of Interest and Highly Possible Regions Proposal Network. Sensors. 2019; 19(10):2288. https://doi.org/10.3390/s19102288
Chicago/Turabian StyleShao, Faming, Xinqing Wang, Fanjie Meng, Jingwei Zhu, Dong Wang, and Juying Dai. 2019. "Improved Faster R-CNN Traffic Sign Detection Based on a Second Region of Interest and Highly Possible Regions Proposal Network" Sensors 19, no. 10: 2288. https://doi.org/10.3390/s19102288
APA StyleShao, F., Wang, X., Meng, F., Zhu, J., Wang, D., & Dai, J. (2019). Improved Faster R-CNN Traffic Sign Detection Based on a Second Region of Interest and Highly Possible Regions Proposal Network. Sensors, 19(10), 2288. https://doi.org/10.3390/s19102288