Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System
<p>Visualization of a geoquery by the proposed system.</p> "> Figure 2
<p>Altered point of view visualization of a geoquery by our system.</p> "> Figure 3
<p>Functional Block Diagram of the proposed System.</p> "> Figure 4
<p>Euclidian distance vs routable road distance.</p> "> Figure 5
<p>Feature extraction: distance from nearest atm.</p> "> Figure 6
<p>Architecture and graph of Mean Square Error (MSE) plot as varied for 1st layer number of neurons.</p> "> Figure 7
<p>Optimization of hyperparameters box and sigma.</p> "> Figure 8
<p>Behavior of Random Forest classifier with different number of features.</p> "> Figure 9
<p>Comparison of Precision of all Classifiers.</p> "> Figure 10
<p>Comparison of Accuracy of all Classifiers.</p> "> Figure 11
<p>Comparison of Recall of all Classifiers.</p> "> Figure 12
<p>Comparison of F1 measure of all Classifiers.</p> ">
Abstract
:1. Introduction
1.1. Description of the Problem
1.2. Urban Planning Challenges
1.3. Evolving Technologies and Emerging Applications
1.4. Paper Contribution
2. Related Work
2.1. Machine Learning for Urban Planning
2.2. Visualization of Urban Environments
2.3. Semantic Information Exploitation
3. Problem Formulation and System Overview
3.1. Problem Formulation
3.2. System Components
4. Random Forests and Other Machine Learning Classifiers for Urban Computing
4.1. Random Forests
- Drawing n bootstrap samples from the original dataset (n refers to the numbers of trees to be constructed).
- For each of the bootstrap samples, grow a classification tree after modifying it as follows: in each node, rather than choosing the best segregation between all predictors, randomly sample m predictors and select the best separation between them.
- The predictions for new data can be implemented by aggregating the predictions of the n trees (majority vote).
4.2. Support Vector Machines and other Classifiers
5. Experimental Evaluation
5.1. Urban Data Description and Feature Extraction
- Dimensions
- Location
- Use
- Material
- Address
- Area
- Height
- Semantic information: use, proximity to other landmarks like media transport stations, places of touristic interest, green areas or rivers, ATM, parking areas
- Media of building (e.g., photos, schematics, contracts).
- Distance to any other building or landmark, both Euclidean or based on shorter route algorithms like Dijkstra
- Number of other parking places in the area (1000 m)
- Distance to the nearest next parking (Euclidean)
- Number of ATMs at a distance of 1000 m
- Distance from the nearest ATM (Euclidean)
- Distance from the nearest ATM (Dijkstra using the actual routable road network)
- Number of spots of tourist interest (1000 m)
- Distance to the nearest spot of tourist interest
- Building area (in m2)
5.2. Experimental Setup
- True Positives (TP): The cases in which the classifier predicted yes and the actual sample’s class was also yes, formally
- True Negatives (TN): The cases in which the classifier predicted no and the actual sample’s class was no, formally
- False Positives (FP): The cases in which the classifier predicted yes and the actual sample’s class was no, formally
- False Negatives (FN): The cases in which the classifier predicted no and the actual sample’s class was yes, formally
- Accuracy: the ratio of the number of correct predictions to the total number of input samples.
- Specificity: It corresponds to the proportion of negative samples that are mistakenly considered as positive, with respect to all negative samples.
- Precision: It is the number of correctly predicted positive results divided by the number of all samples predicted as positive by the classifier.
- Recall (or Sensitivity): It is the number of correctly predicted positive results divided by the number of all positive samples regardless of prediction (all samples that should have been identified as positive).
- F1 measure: is the Harmonic Mean between Precision and Recall. Its range is [0, 1]. It provides information on how precise the classifier is (how many instances it classifies correctly), as well as how robust it is (if it misses a significant number of instances).
- G-Mean: The geometric mean (G-Mean) is the root of the product of class-wise sensitivity. This measure tries to maximize the accuracy on each of the classes while keeping these accuracies balanced. For binary classification G-mean is the squared root of the product of the sensitivity and specificity.
5.3. Experimental Results
5.3.1. Experiment Description
5.3.2. Multilayer Perceptron Results
5.3.3. Support Vector Machines (SVM)
5.3.4. Bag of Decision Trees & Random Forests
5.3.5. K Nearest Neighbors (KNN)
5.3.6. Naive Bayes
5.4. Comparisons–Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Datex II Specifications. Available online: https://www.datex2.eu/datex2/specifications (accessed on 25 February 2019).
- European Committee for Standardization. Available online: https://www.cen.eu/Pages/default.aspx (accessed on 25 February 2019).
- Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. Benefits, Adoption Barriers and Myths of Open Data and Open Government. Inf. Syst. Manag. 2012, 29, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Wang, J.; Gao, Y.; Li, J.; Lu, H. Multi-view 3D object retrieval with deep embedding network. IEEE Trans. Image Process. 2016, 25, 5526–5537. [Google Scholar] [CrossRef]
- Doulamis, N.; Voulodimos, A. FAST-MDL: Fast Adaptive Supervised Training of multi-layered deep learning models for consistent object tracking and classification. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 318–323. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Int. Neurosc. 2018. [Google Scholar] [CrossRef]
- Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3389–3396. [Google Scholar]
- Araque, O.; Corcuera-Platas, I.; Sanchez-Rada, J.F.; Iglesias, C.A. Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst. Appl. 2017, 77, 236–246. [Google Scholar] [CrossRef]
- Severyn, A.; Moschitti, A. Learning to rank short text pairs with convolutional deep neural networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 9–13 August 2015; pp. 373–382. [Google Scholar]
- Korczak, J.; Hernes, M. Deep Learning for Financial Time Series Forecasting in A-Trader System. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, Prague, Czech Republic, 3–6 September 2017. [Google Scholar]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef] [Green Version]
- Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep learning for computational biology. Mol. Syst. Boil. 2016, 12, 878. [Google Scholar] [CrossRef] [Green Version]
- Schirrmeister, R.; Gemein, L.; Eggensperger, K.; Hutter, F.; Ball, T. Deep learning with convolutional neural networks for decoding and visualization of EEG pathology. In Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, PA, USA, 1 December 2018. [Google Scholar]
- Komiske, P.T.; Metodiev, E.M.; Schwartz, M.D. Deep learning in color: Towards automated quark/gluon jet discrimination. J. High Energy Phys. 2017. [Google Scholar] [CrossRef]
- Schütt, K.T.; Sauceda, H.E.; Kindermans, P.J.; Tkatchenko, A.; Müller, K.R. SchNet–A deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148, 241722. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, L.; Sun, A.; Tay, A. Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv. 2019, 5. [Google Scholar] [CrossRef]
- Doulamis, N.; Yiakoumettis, C.; Miaoulis, G.; Protopapadakis, E. A Constraint Inductive Learning-Spectral Clustering Methodology for Personalized 3D Navigation. In Proceedings of the ISVC, Rethymnon, Greece, 29–31 July 2013; pp. 108–117. [Google Scholar]
- Yiakoumettis, C.; Doulamis, N.; Miaoulis, G.; Ghazanfarpour, D. Active learning of user’s preferences estimation towards a personalized 3D navigation of geo-referenced scenes. GeoInformatica 2014, 18, 27–62. [Google Scholar] [CrossRef]
- Doulamis, N.; Yiakoumettis, C.; Miaoulis, G. Personalised 3D navigation and understanding of Geo-referenced Scenes. In Proceedings of the WOWMOM 2013, Madrid, Spain, 4–7 June 2013; pp. 1–6. [Google Scholar]
- Fainstein, S.S.; DeFilippis, J. Readings in Planning Theory; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Lun, L.; Elisabete, S.; Chunyang, W.; Hui, W. A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput. Environ. Urban Syst. 2017, 113–125. [Google Scholar] [CrossRef]
- Jiang, S.; Alves, A.; Rodrigues, F.; Pereira, J., Jr.; Pereira, F.C. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Rho, S. Urban planning and building smart cities based on the Internet of Things using Big Data analytics. Comput. Netw. 2016, 101, 63–80. [Google Scholar] [CrossRef]
- Sarkar, S.; Chawla, S.; Ahmad, S.; Srivastava, J.; Hammady, H.; Filali, F.; Borge-Holthoefer, J. Effective urban structure inference from traffic flow dynamics. IEEE Trans. Big Data 2017, 191–193. [Google Scholar] [CrossRef]
- Frankhauser, P.; Tannier, C.; Vuidel, G.; Houot, H. An integrated multifractal modelling to urban and regional planning. Comput. Environ. Urban Syst. 2018, 132–146. [Google Scholar] [CrossRef]
- Fractalopolis. Available online: https://sourcesup.renater.fr/fractalopolis (accessed on 25 February 2019).
- Streich, B. Dynamic Visualization of Urban Sprawl Scenarios. In Proceedings of the Digital Landscape Conference, Bernburg, Germany, 2–4 May 2002. [Google Scholar]
- Holzmann, T.; Maurer, M.; Fraundorfer, F.; Bischof, H. Semantically Aware Urban 3D Reconstruction with Plane-Based Regularization. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 11218, pp. 487–503. [Google Scholar]
- Zagarskikh, A.; Karsakov, A.; Bezgodov, A. Efficient Visualization of Urban Simulation Data Using Modern GPUs. Procedia Comput. Sci. 2015, 2928–2932. [Google Scholar] [CrossRef]
- Zagarskikh, A.; Karsakov, A.; Tchurov, T. The Framework for Problem Solving Environments in Urban Science. Procedia Comput. Sci. 2014, 2483–2495. [Google Scholar] [CrossRef]
- Cabezas, R.; Straub, J.; Fisher, J.W., III. Semantically-Aware Aerial Reconstruction from Multi-Modal Data. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015. [Google Scholar]
- Du, S.; Zhang, F.; Zhang, X. Semantic classification of urban buildings combining VHR image and GIS. ISPRS J. Photogramm. Remote Sens. 2015, 107–119. [Google Scholar] [CrossRef]
- Rouhani, M.; Lafarge, F.; Alliez, P. Semantic segmentation of 3D textured meshes for urban scene analysis. ISPRS J. Photogramm. Remote Sens. 2016, 124–139. [Google Scholar] [CrossRef]
- Gröger, G.; Plümer, L. Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33. [Google Scholar] [CrossRef]
- Smart, P.D.; Quinn, J.A.; Jones, C.B. City model enrichment. ISPRS J. Photogramm. Remote Sens. 2011, 223–234. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. In Machine Learning; Kluwer Academic Publishers: Aarhus, Denmark, 2001. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2/3, 18–22. [Google Scholar]
- Bottou, L.; Vapnik, V. Local Learning Algorithms. Neural Comput. 1992, 4, 888–900. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process. Syst. 2012, 25, 2951–2959. [Google Scholar]
- Rish, I. An empirical study of the naive Bayes classifier. In IJCAI-2001 Workshop on Empirical Methods in AI; IBM Research Division: New York, NY, USA, 2001. [Google Scholar]
Actual Class | |||
---|---|---|---|
YES () | NO () | ||
Classifier’s Prediction | YES ( | TP | FP |
NO ( | FN | TN |
Dataset | Accuracy | Specificity | Precision | Recall | F1 Measure | G-Mean |
---|---|---|---|---|---|---|
1 | 0.790 | 0.84 | 0.82 | 0.74 | 0.78 | 0.79 |
2 | 0.740 | 0.92 | 0.88 | 0.56 | 0.68 | 0.72 |
3 | 0.660 | 0.72 | 0.68 | 0.60 | 0.64 | 0.66 |
4 | 0.640 | 0.67 | 0.65 | 0.61 | 0.63 | 0.64 |
5 | 0.640 | 0.68 | 0.65 | 0.60 | 0.63 | 0.64 |
6 | 0.630 | 0.78 | 0.69 | 0.48 | 0.56 | 0.61 |
7 | 0.675 | 0.65 | 0.67 | 0.70 | 0.68 | 0.67 |
8 | 0.675 | 0.78 | 0.72 | 0.57 | 0.64 | 0.67 |
Dataset | Accuracy | Specificity | Precision | Recall | F1 Measure | G-Mean |
---|---|---|---|---|---|---|
1 | 0.85 | 0.91 | 0.90 | 0.78 | 0.83 | 0.84 |
2 | 0.85 | 0.90 | 0.89 | 0.80 | 0.84 | 0.85 |
3 | 0.77 | 0.81 | 0.79 | 0.73 | 0.76 | 0.77 |
4 | 0.77 | 0.80 | 0.78 | 0.73 | 0.76 | 0.76 |
5 | 0.78 | 0.87 | 0.84 | 0.69 | 0.76 | 0.77 |
6 | 0.80 | 0.90 | 0.88 | 0.70 | 0.78 | 0.79 |
7 | 0.78 | 0.83 | 0.81 | 0.73 | 0.77 | 0.78 |
8 | 0.80 | 0.90 | 0.88 | 0.70 | 0.78 | 0.79 |
Dataset | Accuracy | Specificity | Precision | Recall | F1 Measure | G-Mean |
---|---|---|---|---|---|---|
1 | 0.96 | 0.98 | 0.98 | 0.93 | 0.95 | 0.95 |
2 | 0.94 | 0.98 | 0.98 | 0.89 | 0.93 | 0.93 |
3 | 0.86 | 0.93 | 0.92 | 0.79 | 0.85 | 0.86 |
4 | 0.92 | 0.93 | 0.93 | 0.91 | 0.92 | 0.92 |
5 | 0.93 | 0.92 | 0.92 | 0.94 | 0.93 | 0.93 |
6 | 0.93 | 0.92 | 0.92 | 0.93 | 0.93 | 0.92 |
7 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
8 | 0.86 | 0.92 | 0.91 | 0.80 | 0.85 | 0.86 |
Dataset | Accuracy | Specificity | Precision | Recall | F1 Measure | G-Mean |
---|---|---|---|---|---|---|
1 | 0.73 | 0.92 | 0.87 | 0.53 | 0.66 | 0.70 |
2 | 0,71 | 0.94 | 0.89 | 0.48 | 0.62 | 0.67 |
3 | 0.72 | 0.90 | 0.84 | 0.53 | 0.65 | 0.69 |
4 | 0.69 | 0.92 | 0.85 | 0.46 | 0.60 | 0.65 |
5 | 0.71 | 0.92 | 0.86 | 0.50 | 0.63 | 0.68 |
6 | 0.68 | 0.91 | 0.83 | 0.44 | 0.58 | 0.63 |
7 | 0.68 | 0.93 | 0.86 | 0.43 | 0.57 | 0.63 |
8 | 0.69 | 0.87 | 0.80 | 0.51 | 0.62 | 0.67 |
Dataset | Accuracy | Specificity | Precision | Recall | F1 Measure | G-Mean |
---|---|---|---|---|---|---|
1 | 0.77 | 0.85 | 0.82 | 0.68 | 0.74 | 0.76 |
2 | 0.74 | 0.85 | 0.81 | 0.63 | 0.71 | 0.73 |
3 | 0.73 | 0.78 | 0.76 | 0.68 | 0.72 | 0.73 |
4 | 0.73 | 0.78 | 0.76 | 0.68 | 0.72 | 0.73 |
5 | 0.73 | 0.78 | 0.76 | 0.68 | 0.72 | 0.73 |
6 | 0.73 | 0.78 | 0.76 | 0.68 | 0.72 | 0.73 |
7 | 0.73 | 0.78 | 0.76 | 0.68 | 0.72 | 0.73 |
8 | 0.73 | 0.78 | 0.76 | 0.68 | 0.72 | 0.73 |
Dataset | Accuracy | Specificity | Precision | Recall | F1 Measure | G-Mean |
---|---|---|---|---|---|---|
MLP | 0.681 | 0.755 | 0.719 | 0.608 | 0.655 | 0.674 |
SVM | 0.799 | 0.865 | 0.846 | 0.733 | 0.784 | 0.796 |
KNN | 0.699 | 0.914 | 0.850 | 0.485 | 0.617 | 0.665 |
Naive Bayes | 0.736 | 0.798 | 0.770 | 0.674 | 0.718 | 0.733 |
Bag of Decision trees | 0.651 | 0.601 | 0.636 | 0.700 | 0,666 | 0.649 |
Random Forest | 0.913 | 0.938 | 0.934 | 0.889 | 0.910 | 0.912 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sideris, N.; Bardis, G.; Voulodimos, A.; Miaoulis, G.; Ghazanfarpour, D. Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System. Sensors 2019, 19, 2266. https://doi.org/10.3390/s19102266
Sideris N, Bardis G, Voulodimos A, Miaoulis G, Ghazanfarpour D. Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System. Sensors. 2019; 19(10):2266. https://doi.org/10.3390/s19102266
Chicago/Turabian StyleSideris, Nikolaos, Georgios Bardis, Athanasios Voulodimos, Georgios Miaoulis, and Djamchid Ghazanfarpour. 2019. "Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System" Sensors 19, no. 10: 2266. https://doi.org/10.3390/s19102266
APA StyleSideris, N., Bardis, G., Voulodimos, A., Miaoulis, G., & Ghazanfarpour, D. (2019). Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System. Sensors, 19(10), 2266. https://doi.org/10.3390/s19102266