Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea
<p>Study area, including ground station locations used for estimating solar radiation. Groups employed for five-fold cross-validation are indicated by colored circles.</p> "> Figure 2
<p>Structural diagram describing deep neural network (DNN) operation.</p> "> Figure 3
<p>Density scatterplots describing the correlation between data provided by selected satellite imagery-based solar radiation retrieval models and the ground for (<b>a</b>) physical, (<b>b</b>) support vector regression (SVR), (<b>c</b>) random forest (RF), (<b>d</b>) artificial neural network (ANN), and (<b>e</b>) DNN.</p> "> Figure 4
<p>Temporal varations in root mean square error (RMSE) and sample number for each model by local time.</p> "> Figure 5
<p>Relative variable importance determined using RF analysis for solar zenith angle (SZA), visible spectral band (VIS), infrared bands IR1–4, solar azimuth angle (SAA), day of year (DOY), time, year, viewing zenith angle (VZA), viewing azimuth angle (VAA), latitude (LAT), and longitude (LON).</p> "> Figure 6
<p>Comparison of solar radiation maps simulated using (<b>a</b>) the pattern determined from the visible band on 03:00 UTC, 15 April 2017 with (<b>b</b>) the physical model, (<b>c</b>) SVR, (<b>d</b>) RF, (<b>e</b>) ANN, and (<b>f</b>) DNN.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Collection
2.1. Study Area Characteristics
2.2. COMS MI Satellite Data
2.3. Input Parameter Structure for Spatial Solar Radiation
3. Methods
3.1. Physical Model for Solar Radiation
3.2. Aritificial Neural Networks (ANNs)
3.3. Regression Version of Support Vector Machine (SVM)
3.4. Random Forest (RF)
3.5. Deep Neural Networks (DNN)
4. Results
4.1. Validation Using Data Supplied by Ground Pyranometers in South Korea
4.2. Analysis of Variable Importance from RF
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brock, T.K. Calculating solar radiation for ecological studies. Ecol. Model. 1981, 14, 1–19. [Google Scholar] [CrossRef]
- Zhou, Q.; Flores, A.; Glenn, N.F.; Walters, R.; Han, B. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S. PLoS ONE 2017, 12, 2321–2325. [Google Scholar] [CrossRef]
- Shook, K.; Pomeroy, J. Synthesis of incoming shortwave radiation for hydrological simulation. Hydrol. Res. 2011, 42, 433–446. [Google Scholar] [CrossRef]
- Aber, J.D.; Freuder, R. Variation among solar radiation data sets for the Eastern US and its effects on predictions of forest production and water yield. Clim. Res. 2000, 15, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Fallahi, S.; Amanollahi, J.; Tzanis, C.G.; Ramli, M.F. Estimation solar radiation using NOAA/AVHRR and ground measurement data. Atmos. Res. 2018, 199, 93–102. [Google Scholar] [CrossRef]
- Qin, J.; Tang, W.; Yang, K.; Lu, N.; Niu, X.; Liang, S. An efficient physically based parameterization to derived surface solar irradiance based on satellite atmospheric products. J. Geophys. Res. Atmos. 2015, 120, 4975–4988. [Google Scholar] [CrossRef]
- Roebeling, R.; Van Putten, E.; Genovese, G.; Rosema, A. Application Meteosat derived meteorological information for crop yield prediction in Europe. Int. J. Remote Sens. 2004, 25, 5389–5401. [Google Scholar] [CrossRef]
- Walton, J.C.; Martinez-Gonzalez, F.; Worthington, R. Desert vegetation and timing of solar radiation. J. Arid Environ. 2005, 60, 697–707. [Google Scholar] [CrossRef]
- Paulescu, M.; Paulescu, E.; Gravila, P.; Badescu, V. Solar radiation measurements. In Weather Modeling and Forecasting of PV Systems Operation. Green Energy and Technology; Springer: London, UK, 2013; pp. 17–42. [Google Scholar]
- Beyer, F.; Polo, J.; Suri, M.; Torres, J.L.; Lorenz, E.; Muller, S.; Hoyer-Klick, C.; Ineichen, P. Report on Benchmarking of Radiation Products. 2009, p. 161. Available online: https://www.researchgate.net/publication/265362324_Report_on_Benchmarking_of_Radiation_Products (accessed on 17 February 2019).
- Gueymard, C.A.; Myers, D.R. Validation and ranking methodologies for solar radiation models. In Modeling Solar Radiation at the Earth’s Surface; Badescu, V., Ed.; Springer: London, UK, 2008. [Google Scholar]
- Hasenauer, H.; Petritsch, R.; Zhao, M.; Boisvenue, C.; Running, S.W. Reconciling satellite with ground data to estimate forest productivity at national scales. Forest Ecol. Manag. 2012, 276, 196–208. [Google Scholar] [CrossRef]
- Alsamamra, H.; Rouz-Arias, J.A.; Pozo-Vazqyezm, D.; Tovar-Pescador, J. A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain. Agr. Forest Meteorol. 2009, 149, 1343–1357. [Google Scholar] [CrossRef]
- Evrendilek, F.; Ertekin, C. Statistical modeling of spatio-temporal variability in monthly average daily solar radiation over Turkey. Sensors 2007, 7, 2763–2778. [Google Scholar] [CrossRef]
- Tapiador, F.J. Assessment of renewable energy potential through satellite data and numerical models. Energy Environ. Sci. 2009, 2, 1142–1161. [Google Scholar] [CrossRef]
- Liang, S.; Li, X.; Wang, J. Atmospheric Correction of Optical Imagery. In Advanced Remote Sensing: Terrestrial Information Extraction and Application, 1st ed.; Academic Press: Oxford, UK, 2012; pp. 112–124. [Google Scholar]
- Lu, H.; Liu, R.; Liu, J.; Liang, S. An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China. J. Geophys. Res. 2010, 115, D18102. [Google Scholar] [CrossRef]
- Kawai, Y.; Kawamura, H. Validation and improvement of satellite-derived surface solar radiation over the northwestern Pacific Ocean. J. Oceanogr. 2005, 61, 79–89. [Google Scholar] [CrossRef]
- Yeom, J.M.; Han, K.S.; Kim, Y.S.; Jang, J.-D. Neural network determination of cloud attenuation to estimate insolation using MTSAT-1R data. Int. J. Remote Sens. 2008, 29, 6193–6208. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dediue, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef]
- Greuell, W.; Meirink, J.F.; Wang, P. Retrieval of validation of global, direct, and diffuse irradiance derived from SEVIRI satellite observations. J. Geophys. Res. Atmos. 2013, 118, 2340–2361. [Google Scholar] [CrossRef]
- Romano, F.; Cimini, D.; Cersosimo, A.; Paola, F.D.; Gallucci, D.; Gentle, S.; Geraldi, E.; Larosa, S.; Nilo, S.T.; Ricciardelli, E.; Ripepi, E.; Viggiano, M. Improvement in surface solar irradiance estimation using HRV/MSG data. Remote Sens. 2018, 10, 1288. [Google Scholar] [CrossRef]
- Tanahashi, S.; Wanamura, H.; Matsuura, T.; Takahashi, T.; Yusa, H. A system to distribute satellite incident solar radiation in real-time. Remote Sens. Environ. 2001, 75, 412–422. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Alamri, S.N. ANN-based modeling and estimation of daily global solar radiation data: A case study. Energy Convers. Manag. 2009, 50, 1644–1655. [Google Scholar] [CrossRef]
- Molina, A.; Falvey, M.; Rondanelli, R. A solar radiation database for Chile. Sci. Rep. 2017, 7, 14823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adaramola, M.S. Estimating global solar radiation using common meteorological data in Akure, Nigeria. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Muneer, T.; Gueymard, C.; Kambezidis, H. Solar Radiation and Daylight Models, 2nd ed.; Elsevier: New York, NY, USA, 2004; p. 345. [Google Scholar]
- Qin, W.; Wang, L.; Lin, A.; Zhang, M.; Xia, X.; Hu, B.; Niu, Z. Comparison of deterministic and data-driven models for solar radiation estimation in China. Renew. Sustain. Energy Rev. 2018, 81, 579–594. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobee, B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230, 215–257. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Jang, E.; Rhee, J. Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric. For. Meteorol. 2016, 216, 157–169. [Google Scholar] [CrossRef]
- Hasni, A.; Sehli, A.; Draoui, B.; Bassou, A.; Amieur, B. Estimating global solar radiation using artificial neural network and climate data in the south-western region of Algeria. Energy Procedia 2012, 18, 531–537. [Google Scholar] [CrossRef]
- Chen, S.; Billings, S.A. Neural Networks for Nonlinear Dynamic System Modeling and Identification. Int. J. Control 1992, 56, 319–346. [Google Scholar] [CrossRef]
- Deo, R.C.; Wen, X.; Qi, F. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy 2016, 168, 568–593. [Google Scholar] [CrossRef]
- Deo, R.C.; Sahin, M. Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. Renew. Sustain. Energy Rev. 2017, 72, 828–848. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Belaid, S.; Mellit, A. Prediction of daily and mean monthly global solar raisdiation using support vector machine in an arid climate. Energy Convers. Manag. 2016, 118, 105–118. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Salakhutdinov, R.; Hinton, G.E. Semantic hashing. Int. J. Approx. Reason. 2009, 50, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhang, W.; Huang, W.; Hong, Z.; Meng, L. Upscaling of surface soil moisture using a deep learning model with VIIRS RDR. ISPRS Int. J. Geo-Inf. 2017, 6, 130. [Google Scholar] [CrossRef]
- Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE conference on computer vision and pattern recognition (CVPR), Washington, DC, USA, 16–21 June 2012; pp. 3642–3649. [Google Scholar]
- Kruger, N.; Janssen, P.; Kalkan, S.; Lappe, M.; Leonardis, A.; Piater, J.H.; Rodiguez-Sanchez, A.J.; Wiskott, L. Deep hierarchies in primate visual cortex: What can we learn for computer vision? IEEE Trans. Pattern Anal. Mch. Intell. 2013, 35, 1847–1871. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- LeRoux, N.; Bengio, Y. Deep belief networks are compact universal approximators. Neural Comput. 2010, 22, 2192–2207. [Google Scholar] [CrossRef]
- Sutskever, I.; Hinton, G.E. Deep, narrow sigmoid belief networks are universal approximators. Neural Comput. 2008, 20, 2629–2636. [Google Scholar] [CrossRef]
- Kuhnlein, M.; Appelhans, T.; Thies, B.; Nauss, T. Improving the accuracy of rainfall rates from optical satellite sensors with machine learning–A random forests-based approach applied to MSG SEVIRI. Remote Sens. Environ. 2014, 141, 129–143. [Google Scholar] [CrossRef]
- Lee, J.; Im, J.; Kim, K.; Quackenbush, L.J. Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data. Forest 2018, 9, 268. [Google Scholar] [CrossRef]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp., J.; Dudhia, J.; Gill, D.; Duda, M.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note; Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. Available online: https://opensky.ucar.edu/islandora/object/technotes%3A500/datastream/PDF/view (accessed on 17 February 2019).
- Kawamura, H.; Tanahashi, S.; Takahashi, T. Estimation of insolation over the Pacific Ocean off the Sanriku Coast. J. Oceanogr. 1998, 54, 457–464. [Google Scholar] [CrossRef]
- Yeom, J.M.; Han, K.S.; Kim, J.J. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data. Asia-Pac. J. Atmos. Sci. 2012, 48, 115–123. [Google Scholar] [CrossRef]
- KMA. Development of Meteorological Data Processing System for Communication, Ocean and Meteorological Satellite (ATBD); Korea Meteorological Agency: Seoul, Korea, 2009. [Google Scholar]
- Yeom, J.M.; Seo, Y.; Kim, D.; Han, K. Solar radiation received by slopes using COMS imagery, a physically based radiation model, and GLOBE. J. Sens. 2016, 2016, 4834579. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Freym, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Atmos. 1998, 103, 32141–32157. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.D.; Viau, A.A.; Anctil, F. Neural network estimation of air temperatures from AVHRR data. Int. J. Remote Sens. 2004, 25, 4541–4554. [Google Scholar] [CrossRef]
- Yeom, J.M.; Han, K.S. Improved estimation of surface Solar Insolation using neural network and MTSAT-1R data. Comput. Geosci. UK 2010, 36, 590–597. [Google Scholar] [CrossRef]
- Bertsekas, D.P.; Tsitsiklis, J.N. Neuro-Dynamic Programing; Athena Scientific: Belmont, MA, USA, 1996. [Google Scholar]
- Levenberg, K. A method for the solution of certain problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1997, 11, 761–767. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sens. 2018, 10, 447. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Anisi, M.H.; Alam, K.A.; Petkovic, D. Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Convers. Manag. 2015, 91, 433–441. [Google Scholar] [CrossRef]
- Piri, J.; Shamshirband, S.; Petkovic, D.; Tong, C.W.; ur Rehman, M.H. Prediction of the solar radiation on the Earth using support vector regression technique. Infrared. Phys. Technol. 2015, 68, 179–185. [Google Scholar] [CrossRef]
- Radhika, Y.; Shashi, M. Atmospheric temperature prediction using support vector machines. Int. J. Comput. Theor. Eng. 2009, 1, 55–58. [Google Scholar] [CrossRef]
- Ramedani, Z.; Omid, M.; Keyhani, A.; Shamshirband, S.; Khoshnevisan, B. Potential of radial basis function based support vector regression for global solar radiation prediction. Renew. Sustain. Energy Rev. 2014, 39, 1005–1011. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Ortiz-Garci, E.G.; Perez-Bellido, A.M.; Portilla-Figueras, A.; Prieto, L. Short term wind speed prediction based on evolutionary support vector regression algorithms. Expert Syst. Appl. 2011, 38, 4052–4057. [Google Scholar] [CrossRef]
- Jang, E.; Im, J.; Park, G.H.; Park, Y.G. Estimation of fugacity of carbon dioxide in the East Sea using in situ measurements and Geostationary Ocean Color Imager satellite data. Remote Sens. 2017, 9, 821. [Google Scholar] [CrossRef]
- Xun, L.; Wang, L. An object-based SVM method incorporating optimal segmentation scale estimation using Bhattacharyya Distance for mapping salt cedar (Tamarisk spp.) with QuickBird imagery. Gisci. Remote Sens. 2015, 52, 257–273. [Google Scholar] [CrossRef]
- MathWorks. Available online: http://mathworks.com/help/stats/fitsvm.html (accessed on 1 May 2019).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Brokamp, C.; Jandarov, R.; Rao, M.B.; LeMasters, G.; Ryan, P. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef]
- Kayri, M.; Kayri, I.; Gencoglu, M.T. The performance comparison of multiple linear regression, random forest and artificial neural network by using photovoltaic and atmospheric data. In Proceedings of the 14th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June 2017. [Google Scholar]
- Kim, M.; Im, J.; Park, H.; Park, S.; Lee, M.I.; Ahn, J.H. Detection of tropical overshooting cloud tops using Himawari-8 imagery. Remote Sens. 2017, 9, 685. [Google Scholar] [CrossRef]
- Mascaro, J.; Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Martin, R.E.; Anderson, C.; Higgins, M.; Chadwik, K.D. A tale of two “forests”: Random forest machine learning aids tropical forest carbon mapping. PLoS ONE 2014, 9, e85993. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.; Im, J.; Park, S.; Park, H.; Ahn, M.H.; Chan, P.W. Icing detection over East Asia from geostationary satellite data using machine learning approaches. Remote Sens. 2018, 10, 631. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Ali, L.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Lee, C.S.; Sohn, E.; Park, J.D.; Jang, J.D. Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea. Gisci. Remote Sens. 2019, 56, 43–67. [Google Scholar] [CrossRef]
- H2O AI/h2o-tutorials. Available online: https://github.com/h2oai/h2o-tutorials (accessed on 1 May 2019).
- Arora, A.; Candel, A.; Lanford, J.; Ledell, E.; Parmar, V. Deep Learning with H2O; H2O.ai, Inc.: Mountain View, CA, USA, 2015. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Neural Information Processing System 25 (NIPS2012), Lake Tahoe, NV, USA, 3–8 December 2012. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectifier linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Cook, D. Practical Machine Learning with H2O; O’Reilly: Sebastopol, CA, USA, 2016. [Google Scholar]
- Hawkins, D.; Basak, C.; Mills, D. Assessing model fit by cross-validation. J. Chem. Inf. Comput. Sci. 2003, 43, 579–586. [Google Scholar] [CrossRef]
- Bengio, Y. Deep learning of representations: Looking forward. In Proceedings of the International Conference on Statistical Language and Speech Processing, Berlin, Germany, 29–31 July 2013; pp. 1–37. [Google Scholar]
- Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
- Pinker, R.T.; Frouin, R.; Li, Z. A review of satellite methods to derive surface shortwave irradiance. Remote Sens. Environ. 1995, 51, 108–124. [Google Scholar] [CrossRef]
- Park, S.; Seo, E.; Kang, D.; Im, J.; Lee, M. Prediction of Drought on Pentad Scale Using Remote Sensing Data and MJO Index through Random Forest over East Asia. Remote Sens. 2018, 10, 1811. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Martins, J.V.; Tanre, D.; Remer, L.; Kaufman, Y.; Mattoo, S.; Levy, R. MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys. Res. Lett. 2002, 29, MOD4-1–MOD4-4. [Google Scholar] [CrossRef]
- Ryu, Y.; Jiang, C.; Kobayashi, H.; Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. 2018, 204, 812–825. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data. Atmos. Chem. Phys. 2016, 16, 2543–2557. [Google Scholar] [CrossRef] [Green Version]
Satellite Sensor | Orbit Type (altitude) | Wavelength (μm) | Spatial Resolution | Application |
---|---|---|---|---|
COMS MI | Geo-synchronous (36,000 km) | VIS: 0.55–0.80 | 1 km | Cloud detection in daytime, atmospheric motion vector |
IR3: 3.50–4.00 | 4 km | surface temperature | ||
IR4: 6.50–7.00 | Assessment of water vapor | |||
IR1: 10.30–11.30 | Cloud detection using IR split window method | |||
IR2: 11.50–12.50 | Cloud detection using IR split window method |
Parameter | |
---|---|
Sun-earth distance | |
Sun-earth distance (annual mean) | |
Ratio of forward to total scattering by aerosols | |
Solar constant | |
Incident solar constant | |
Diffuse irradiance | |
Absorption of water vapor | |
Solar zenith angle | |
Solar azimuth angle | |
Transmittance due to attenuation by aerosols | |
Transmittance due to absorption by ozone | |
Transmittance due to Rayleigh scattering | |
Single scattering albedo |
Structure | Configuration | |||
---|---|---|---|---|
Number of hidden nodes | 14 | 70 | 140 | 210 |
Number of hidden layers | 4–6 | 5–7 | 6–8 | 6–8 |
L1 regularization | 0, 1 × 10−4, 1 × 10−5 | |||
L2 regularization | 0, 1 × 10−4, 1 × 10−5 |
Methods | R2 | RMSE 1 (W·m−2) | MAE 2 (W·m−2) | Slope |
---|---|---|---|---|
Physical model | 0.882 | 91.787 | 66.247 | 1.041 |
SVR | 0.836 | 106.185 | 76.964 | 0.862 |
RF | 0.888 | 87.441 | 60.603 | 1.014 |
ANN | 0.791 | 123.211 | 91.240 | 0.912 |
DNN | 0.886 | 88.219 | 60.817 | 0.901 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeom, J.-M.; Park, S.; Chae, T.; Kim, J.-Y.; Lee, C.S. Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea. Sensors 2019, 19, 2082. https://doi.org/10.3390/s19092082
Yeom J-M, Park S, Chae T, Kim J-Y, Lee CS. Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea. Sensors. 2019; 19(9):2082. https://doi.org/10.3390/s19092082
Chicago/Turabian StyleYeom, Jong-Min, Seonyoung Park, Taebyeong Chae, Jin-Young Kim, and Chang Suk Lee. 2019. "Spatial Assessment of Solar Radiation by Machine Learning and Deep Neural Network Models Using Data Provided by the COMS MI Geostationary Satellite: A Case Study in South Korea" Sensors 19, no. 9: 2082. https://doi.org/10.3390/s19092082