Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection
<p>Experiment and mechanical fault simulation.</p> "> Figure 2
<p>Vibration signal and its spectrum in different working conditions.</p> "> Figure 3
<p>Spectrum analysis of vibration signals in different working conditions.</p> "> Figure 4
<p>Comparison of coherent results.</p> "> Figure 4 Cont.
<p>Comparison of coherent results.</p> "> Figure 5
<p>Feature extraction process.</p> "> Figure 6
<p>Characteristic distribution under different faults.</p> "> Figure 7
<p>The classification principle of SVM.</p> "> Figure 8
<p>The classification principle of one-class support vector machines (OCSVM).</p> "> Figure 9
<p>Fault diagnosis process.</p> "> Figure 10
<p>Relationship between accuracy and two key parameters.</p> "> Figure 11
<p>First diagnosis results (confusion matrix).</p> "> Figure 12
<p>Accuracy and F-measure of first test with different methods.</p> "> Figure 13
<p>Diagnosis results of 10 tests with different methods.</p> "> Figure 14
<p>Comparison of diagnosis mean values under different working conditions.</p> ">
Abstract
:1. Introduction
- (1)
- GIS mechanical fault is diagnosed by a holistic approach which integrates the vibration signal acquisition system, feature extraction based on CF and a multi-level classifier composed of OCSVMs and SVM;
- (2)
- The CF is introduced into the feature screening process, and a method of feature extraction based on CF with double thresholds is proposed, which provides a new idea for feature screening and can fully describe characteristics of the vibration signal;
- (3)
- A multi-layer classifier composed of OCSVM and SVM is designed to diagnose GIS faults.
2. Experiments and Vibration Data Analysis
2.1. Experiments
2.2. Vibration Data Analysis
3. Feature Extraction Method of Vibration Signals
3.1. Principle of CF
3.2. Design Ideas of Feature Construction
4. GIS Fault Diagnosis Method Based on SVM and OCSVM
4.1. SVM
4.2. OCSVM
4.3. Fault Diagnosis Process
5. Diagnosis Results and Analysis
5.1. Discussion of Parameters
5.2. Diagnosis Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jo, H.E.; Wang, G.M.; Kim, S.J.; Kil, G.S. Comparison of partial discharge characteristics in SF6 gas under AC and DC. Trans. Electr. Electron. Mater. 2015, 16, 323–327. [Google Scholar] [CrossRef]
- Lothar, H.; Franz, B. Compact and reliable—Decades of benefits: Gas-insulated switchgear from 52 to 1100 kV. ABB Review. 2009. Available online: https://search-ext.abb.com/library/Download.aspx?DocumentID=9AKK104295D4901&LanguageCode=en&DocumentPartId=&Action=Launch (accessed on 25 April 2019).
- Judd, M.D.; Farish, O.; Hampton, B.F. The excitation of UHF signals by partial discharges in GIS. IEEE Trans. Dielectr. Electr. Insul. 1996, 3, 213–228. [Google Scholar] [CrossRef]
- Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF Partial Discharge Sensor in GIS. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1421–1430. [Google Scholar] [CrossRef]
- Gomez, F.A.; Albarracin-Sanchez, R.; Vecino, F.G.; Arrabe, R.G. Diagnosis of Insulation Condition of MV Switchgears by Application of Different Partial Discharge Measuring Methods and Sensors. Sensors 2018, 18, 720. [Google Scholar] [CrossRef]
- Cosgrave, J.A.; Vourdas, A.; Jones, G.R.; Spencer, J.W.; Murphy, M.M.; Wilson, A. Acoustic monitoring of partial discharges in gas insulated substations using optical sensors. IEE Proc. A Sci. Meas. Technol. 2006, 140, 369–374. [Google Scholar] [CrossRef]
- Markalous, S.; Tenbohlen, S.; Feser, K. Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1576–1583. [Google Scholar] [CrossRef]
- Khan, I.U.; Wang, Z.D.; Cotton, I.; Northcote, S. Dissolved gas analysis of alternative fluids for power transformers. IEEE Electr. Insul. Mag. 2007, 23, 5–14. [Google Scholar] [CrossRef]
- Faiz, J.; Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional methods a review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1239–1248. [Google Scholar] [CrossRef]
- Wang, G.; Kil, G.S. Measurement and Analysis of Partial Discharge using an Ultra-High Frequency Sensor for Gas Insulated Structures. Metrol. Meas. Syst. 2017, 24, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.; Lim, J.S. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 236–243. [Google Scholar] [CrossRef]
- Dong, Y.; Tang, J.; Zeng, F.; Liu, M. Features Extraction and Mechanism Analysis of Partial Discharge Development under Protrusion Defect. J. Electr. Eng. Technol. 2015, 10, 344–354. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, X.; Xie, D.; Wang, X.Q.; Yang, A.J.; Rong, M.Z. Time–frequency analysis of PD-induced UHF signal in GIS and feature extraction using invariant moments. Iet Sci. Meas. Technol. 2018, 12, 169–175. [Google Scholar] [CrossRef]
- Lin, Y.H. Using k-means clustering and parameter weighting for partial-discharge noise suppression. IEEE Trans. Power Deliv. 2011, 26, 2380–2390. [Google Scholar] [CrossRef]
- Huang, N.E.; Zheng, S.; Long, S.R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, B.; Wu, L.; Ma, S.; Ren, B.; Su, J.T.; Hou, Y. Analysis of GIS Mechanical Vibration Signal Based on EMD Algorithm. In Proceedings of the International Conference on Information Science & Control Engineering, Beijing, China, 8–10 July 2016; pp. 853–857. [Google Scholar]
- Shang, Y.; Liu, Q.; Niu, B.; Zhang, M.H.; Qi, W.D.; Wu, J.F. Mechanical fault diagnosis system based on acoustic feature analysis in gas insulated switchgear. In Proceedings of the International Conference on Electrical Materials & Power Equipment, Xi’an, China, 14–17 May 2017; pp. 610–615. [Google Scholar]
- Yang, J.G.; Liu, Y.; Hu, D.G.; Wu, B.; Che, B.; Li, J.H. Transient electromagnetic force analysis of GIS bus based on FEM. In Proceedings of the International Conference on Condition Monitoring and Diagnosis, Xi’an, China, 25–28 September 2016; pp. 554–557. [Google Scholar]
- Yang, J.G.; Liu, Y.; Hu, D.G.; Wu, B.; Li, J.H. Transient vibration study of GIS bus based on FEM. In Proceedings of the Power and Energy Engineering Conference, Xi’an, China, 25–28 October 2016; pp. 1092–1095. [Google Scholar]
- Sun, Q.S.; Cao, T.; Hou, Y.; Zhao, T. Detection and Analysis Based on the Abnormal Mechanical Vibration Signal of GIS. In Proceedings of the Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control, Qinhuangdao, China, 18–20 September 2015; pp. 131–134. [Google Scholar]
- Liu, Y.; Jia, Y.Y.; Yang, J.G.; Song, S.Q.; Wu, B.; Li, J.H. Research of mechanical state diagnosis techniques in GIS bus connector based on mechanical vibration. In Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials, Xi’an, China, 20–24 May 2018; pp. 682–685. [Google Scholar]
- Shen, X.; Lin, Z.; Peng, G.; Tang, S.; Zhang, Y. Research on mechanical fault diagnosis of Ultra high voltage GIS based on the combination of neighbor algorithm and FCM. In Proceedings of the Power and Energy Engineering Conference, Xi’an, China, 25–28 October 2016; pp. 2045–2049. [Google Scholar]
- Jeub, M.; Schafer, M.; Esch, T.; Vary, P. Model-Based Dereverberation Preserving Binaural Cues. IEEE Trans. Audio Speech Language Process. 2010, 18, 1732–1745. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Xue, X.; Shi, J.; Zhang, L.; Huang, J.F. Holistic learning-based high-order feature descriptor for smoke recognition. Int. J. Wavelets Multiresolut. Inf. Process. 2018, 468, 193–212. [Google Scholar] [CrossRef]
- Dai, G.; Xie, J.; Fang, Y. Deep Correlated Holistic Metric Learning for Sketch-Based 3D Shape Retrieval. IEEE Trans. Image Process. 2018, 27, 3374–3386. [Google Scholar] [CrossRef] [PubMed]
- Stanev, V.; Oses, C.; Kusne, A.G.; Rodriguez, E.; Paglione, J.; Curtarolo, S.; Takeuchi, I. Machine learning modeling of superconducting critical temperature. Npj Comput. Mater. 2018, 4, 29. [Google Scholar] [CrossRef]
- Miltiadis, A.; Barr, E.T.; Premkumar, D.; Charles, S. A survey of machine learning for big code and naturalness. ACM Comput. Surv. 2018, 51, 1–37. [Google Scholar]
- Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the Support of a High-Dimensional Distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Maglaras, L.A.; Jiang, J.; Cruz, T. Integrated OCSVM mechanism for intrusion detection in SCADA systems. Electron. Lett. 2014, 50, 1935–1936. [Google Scholar] [CrossRef]
- Jung, D.; Ng, K.Y.; Frisk, E.; Krysander, M. Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation. Control Eng. Pract. 2018, 80, 146–156. [Google Scholar] [CrossRef]
- Jung, D.; Ng, K.Y.; Frisk, E.; Krysander, M. A combined diagnosis system design using model-based and data-driven methods. In Proceedings of the 3rd Conference on Control and Fault-tolerant Systems, Barcelona, Spain, 7–9 September 2016; pp. 177–182. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Bhavish, K.N.; Sharon, M.J.; Nirmala, M. SoftMax based User Attitude Detection Algorithm for Sentimental Analysis. Procedia Comput. Sci. 2018, 125, 313–320. [Google Scholar]
- Werbos, P.J. Beyond Regression: New Tools for Prediction And Analysis in The Behavioral Sciences. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Zhang, N.N.; Wu, L.F.; Yang, J.; Guan, Y. Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data. Sensors 2018, 18, 463. [Google Scholar] [CrossRef]
- Sarkar, S.; Healey, G. Hyperspectral Texture Synthesis Using Histogram and Power Spectral Density Matching. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2261–2270. [Google Scholar] [CrossRef]
- Yeom, H.G.; Jang, I.H.; Sim, K.B. Variance considered machines: Modification of optimal hyperplanes in support vector machines. In Proceedings of the IEEE International Symposium on Industrial Electronics, Seoul, Korea, 5–8 July 2009; pp. 1133–1136. [Google Scholar]
- Wang, L.; Jia, X. Integration of Soft and Hard Classifications Using Extended Support Vector Machines. IEEE Geosci. Remote Sens. Lett. 2009, 6, 543–547. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.; Xu, W. Parameter Selection of Gaussian Kernel for One-Class SVM. IEEE Trans. Cybern. 2015, 45, 927–939. [Google Scholar]
- Chen, S.; Cowan, C.N.; Grant, P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 1991, 64, 829–837. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
measuring range (g) | ±0.5 |
sensitivity (V/g) | 10 |
maximum output voltage (V) | ±5 |
weight of a sensor (g) | 10 |
sampling rate (kHz) | 10 |
sampling time length (ms) | 100 |
Health Condition | Category Label | Description of State | Data Illustrate |
---|---|---|---|
Healthy | Class 1 | Normal case | 200 × 4 groups of GIS vibration data were collected under 1000 A current and four classes |
False | Class 2 | Isolation switch fault | |
Class 3 | Looseness of flange screw | ||
Class 4 | Looseness of stone bolt |
Description | Value |
---|---|
gamma of radial basis function (RBF) in OCSVM1 | 0.0217 |
nu of RBF in OCSVM1 | 0.66 |
totalSV in OCSVM1 | 93 |
rho in OCSVM1 | 92.3991 |
gamma of RBF in OCSVM2 | 0.02 |
nu of RBF in OCSVM2 | 0.04 |
totalSV in OCSVM2 | 17 |
rho in OCSVM2 | 16.7936 |
BoxConstraint in SVM (support vector machine) | 0.0003 |
CacheSize in SVM | 1000 |
DeltaGradientTolerance in SVM | 0.001 |
nu of RBF in SVM | 0.5 |
Test Method | Accuracy (%) | ||||
---|---|---|---|---|---|
Normal Case | Isolation Switch Fault | Looseness of Flange Screw | Looseness of Stone Bolt | All Conditions | |
Softmax | 81.667 | 65.000 | 70.000 | 81.667 | 74.583 |
SVM | 85.000 | 71.667 | 75.000 | 70.000 | 75.417 |
Back propagation neural networks (BPNN) | 81.667 | 70.000 | 76.667 | 76.667 | 76.250 |
Naive Bayes (NB) | 81.667 | 86.667 | 85.000 | 86.667 | 85.000 |
OCSVM+SVM | 100.000 | 100.000 | 97.500 | 100.000 | 98.75 |
Test Method | F-measure (%) | ||||
---|---|---|---|---|---|
Normal Case | Isolation Switch Fault | Looseness of Flange Screw | Looseness of Stone Bolt | All Conditions | |
Softmax | 77.778 | 69.643 | 71.765 | 78.400 | 74.396 |
SVM | 85.000 | 72.269 | 72.581 | 71.795 | 75.411 |
BPNN | 81.667 | 67.742 | 78.632 | 77.311 | 76.338 |
NB | 85.217 | 85.950 | 85.000 | 83.871 | 85.010 |
OCSVM+SVM | 100.000 | 98.360 | 97.436 | 99.174 | 98.742 |
Test Method | Mean and Standard Deviation of Accuracy (%) | ||||
---|---|---|---|---|---|
Normal Case | Isolation Switch Fault | Looseness of Flange Screw | Looseness of Stone Bolt | All Conditions | |
Softmax | 86.500 ± 6.007 | 77.500 ± 6.538 | 73.167 ± 5.119 | 79.000 ± 8.285 | 79.046 ± 4.147 |
SVM | 89.167 ± 6.249 | 81.833 ± 10.045 | 81.833 ± 11.988 | 81.833 ± 13.259 | 83.444 ± 9.847 |
BPNN | 76.000 ± 5.784 | 73.333 ± 6.894 | 73.000 ± 4.360 | 74.667 ± 7.106 | 74.254 ± 4.727 |
NB | 84.500 ± 5.215 | 84.500 ± 3.853 | 83.333 ± 3.514 | 88.667 ± 4.216 | 85.290 ± 3.670 |
OCSVM+SVM | 96.167 ± 4.648 | 95.667 ± 2.808 | 91.167 ± 2.727 | 96.000 ± 3.443 | 94.751 ± 3.088 |
Actual Working Condition | Diagnosis Result | ||||
---|---|---|---|---|---|
Normal Case | Isolation Switch Fault | Looseness of Flange Screw | Looseness of Stone Bolt | Unknown Fault Type | |
Isolation switch fault and looseness of stone bolt | 0 | 2 | 0 | 1 | 17 |
Looseness of flange screw and looseness of stone bolt | 0 | 0 | 1 | 0 | 19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Ma, S.; Wu, J.; Jia, B.; Li, W.; Luo, X. Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection. Sensors 2019, 19, 1949. https://doi.org/10.3390/s19081949
Yuan Y, Ma S, Wu J, Jia B, Li W, Luo X. Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection. Sensors. 2019; 19(8):1949. https://doi.org/10.3390/s19081949
Chicago/Turabian StyleYuan, Yang, Suliang Ma, Jianwen Wu, Bowen Jia, Weixin Li, and Xiaowu Luo. 2019. "Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection" Sensors 19, no. 8: 1949. https://doi.org/10.3390/s19081949
APA StyleYuan, Y., Ma, S., Wu, J., Jia, B., Li, W., & Luo, X. (2019). Frequency Feature Learning from Vibration Information of GIS for Mechanical Fault Detection. Sensors, 19(8), 1949. https://doi.org/10.3390/s19081949