Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station
<p>(<b>a</b>) ELBARA-II L-band radiometer tower also holding the Oceanpal GNSS-R antennas over a vineyard field at El Renegado MELBEX site at the Valencia Anchor Station; (<b>b</b>) Detail of the GNSS-R deployment indicating the essential elements.</p> "> Figure 2
<p>(<b>a</b>) Oceanpal antenna gain pattern; (<b>b</b>) projection of Oceanpal gain pattern and ELBARA-II footprint overlay on Google Earth. The upper layer shows the projection of the Oceanpal down-looking antenna’s gain over the soil surface, together with the ELBARA footprint, and the bottom layer is a photo taken by a camera drone overlay on the Google Earth base map; (<b>c</b>) The incidence angle is the complementary angle of elevation, as shown in the graph.</p> "> Figure 3
<p>Soil moisture ThetaProbe sensors and Davis Vantage Pro2 Plus meteorological station.</p> "> Figure 4
<p>Calibration parameter <span class="html-italic">K</span> plot over time.</p> "> Figure 5
<p>LHCP reflectivity vs azimuth angle (<b>a</b>) and vs elevation angle (<b>b</b>).</p> "> Figure 6
<p>Skyplot at 22:00 UTC on 9th September, 2014 showing the in-view GPS satellites available and the respective elevation angles.</p> "> Figure 7
<p>Correlation power of the direct and reflected signals in contrast with the elevation and incidence angles with respect to the antenna for different PRNs. (<b>a</b>) Direct, D, and LHCP reflected signals, Rl, of PRN 02, (<b>b</b>) direct, D, and RHCP reflected signals, Rr, of PRN 02, (<b>c</b>) direct, D, and LHCP reflected signals, Rl of PRN 05, (<b>d</b>) direct, D, and RHCP reflected signals, Rr of PRN 05, (<b>e</b>) direct, D, and LHCP reflected signals, Rl of PRN 06, (<b>f</b>) direct, D, and RHCP reflected signals, Rr of PRN 06, (<b>g</b>) direct, D, and LHCP reflected signals, Rl of PRN 10, (<b>h</b>) direct, D, and RHCP reflected signals, Rr of PRN 10. The 0908 and 0909 respectively represent 8th and 9th September 2014 (As an exception, in this figure, the incidence angle represents the angle between antenna bore sight and the reflected signal).</p> "> Figure 7 Cont.
<p>Correlation power of the direct and reflected signals in contrast with the elevation and incidence angles with respect to the antenna for different PRNs. (<b>a</b>) Direct, D, and LHCP reflected signals, Rl, of PRN 02, (<b>b</b>) direct, D, and RHCP reflected signals, Rr, of PRN 02, (<b>c</b>) direct, D, and LHCP reflected signals, Rl of PRN 05, (<b>d</b>) direct, D, and RHCP reflected signals, Rr of PRN 05, (<b>e</b>) direct, D, and LHCP reflected signals, Rl of PRN 06, (<b>f</b>) direct, D, and RHCP reflected signals, Rr of PRN 06, (<b>g</b>) direct, D, and LHCP reflected signals, Rl of PRN 10, (<b>h</b>) direct, D, and RHCP reflected signals, Rr of PRN 10. The 0908 and 0909 respectively represent 8th and 9th September 2014 (As an exception, in this figure, the incidence angle represents the angle between antenna bore sight and the reflected signal).</p> "> Figure 8
<p>Correlation between GNSS LHCP reflectivity, Rrl, and ELBARA-II horizontal/vertical reflectivity, Rhh/Rvv, for three different incidence angles, namely 35°, 45°, and 55°, respectively, from top to bottom.</p> "> Figure 8 Cont.
<p>Correlation between GNSS LHCP reflectivity, Rrl, and ELBARA-II horizontal/vertical reflectivity, Rhh/Rvv, for three different incidence angles, namely 35°, 45°, and 55°, respectively, from top to bottom.</p> "> Figure 9
<p>Regression of GNSS-R Neural Net Fitting.</p> "> Figure 9 Cont.
<p>Regression of GNSS-R Neural Net Fitting.</p> "> Figure 10
<p>GNSS-R soil moisture as compared to ELBARA-II and ThetaProbe soil moisture as reference.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Campaign at the Valencia Anchor Station
2.2. Measurements and Data Processing
2.3. Soil Moisture Retrieval Algorithms for GNSS-R and ELBARA-II
3. Results
3.1. Waveform from Different GPS Satellites
3.2. Correlation Between Oceanpal GNSS and ELBARA-II Radiometer Measurements
3.3. Neural Net Fitting Results
3.4. Intercomparison Between L-Band Soil Moisture Retrievals and In-Situ Measurements
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martin-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Zavorotny, V.U.; Voronovich, A.G. Bistatic GPS signal reflections at various polarizations from rough land surface with moisture content. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, HI, USA, 24–28 July 2000; pp. 2852–2854. [Google Scholar] [CrossRef]
- Katzberg, S.J.; Torres, O.; Grant, M.S.; Maters, D. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02. Remote Sens. Environ. 2006, 100, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Egido, A.; Caparrini, M.; Ruffini, G.; Paloscia, S.; Santi, E.; Guerriero, L.; Pierdicca, N.; Floury, N. Global Navigation Satellite Systems Reflectometry as a Remote Sensing Tool for Agriculture. Remote Sens. 2012, 4, 2356–2372. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Small, E.E.; Gutmann, E.D.; Bilich, A.L.; Braun, J.J.; Zavorotny, V.U. Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.C.; Small, E.E.; Larson, K.M.; Zavorotny, V.U. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture. IEEE Trans. Geosci. Remote Sens. 2014, 52, 537–543. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Larson, K.M.; Braun, J.J.; Small, E.E.; Gutmann, E.D.; Bilich, A.L. A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2010, 3, 100–110. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Camps, A.; Vall-Llossera, M.; Bosch-Lluis, X.; Monerris, A.; Ramos-Perez, I.; Valencia, E.; Marchan-Hernandez, J.F.; Martinez-Fernandez, J.; Baroncini-Turricchia, G.; et al. Land geophysical parameters retrieval using the interference pattern GNSS-R technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 71–84. [Google Scholar] [CrossRef]
- Chew, C.; Small, E. Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of Cyclone Global Navigation Satellite System (CyGNSS) observations for estimation of soil moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef]
- Camps, A.; Vall-llossera, M.; Park, H.; Portal, G.; Rossato, L. Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture: Global and Regional Differences and Impact of Different Spatial Scales. Remote Sens. 2018, 10, 1856. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; Juglea, S.E.; et al. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Schwank, M.; Wiesmann, A.; Werner, C.; Mätzler, C.; Weber, D.; Murk, A.; Wegmüller, U. ELBARA II, an L-band radiometer system for soil moisture research. Sensors 2010, 10, 584–612. [Google Scholar] [CrossRef]
- Zheng, D.; Li, X.; Wang, X.; Wang, Z.; Wen, J.; van der Velde, R.; Schwank, M.; Su, Z. Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau. Remote Sens. Environ. 2019, 226, 16–25. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, X.; van der Velde, R.; Zeng, Y.; Wen, J.; Wang, Z.; Su, Z. L-band microwave emission of soil freeze–Thaw process in the third pole environment. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5324–5338. [Google Scholar] [CrossRef]
- Schwank, M.; Wigneron, J.P.; Lopez-Baeza, E.; Volksch, I.; Matzler, C.; Kerr, Y.H. L-band radiative properties of vine vegetation at the MELBEX III SMOS cal/val site. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1587–1601. [Google Scholar] [CrossRef]
- Rautiainen, K.; Lemmetyinen, J.; Pulliainen, J.; Vehvilainen, J.; Drusch, M.; Kontu, A.; Seppanen, J. L-band radiometer observations of soil processes in boreal and subarctic environments. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1483–1497. [Google Scholar] [CrossRef]
- Schlenz, F.; Fallmann, J.; Marzahn, P.; Loew, A.; Mauser, W. Characterization of rape field microwave emission and implications to surface soil moisture retrievals. Remote Sens. 2012, 4, 247–270. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Camps, A.; Monerris, A.; Rüdiger, C.; Walker, J.P.; Onrubia, R.; Querol, J.; Park, H.; Pascual, D. On the correlation between GNSS-R reflectivity and L-band microwave radiometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5862–5879. [Google Scholar] [CrossRef]
- Oceanpal. Available online: http://www.star2earth.com/?page_id=426 (accessed on 25 February 2019).
- Theta Probe. Available online: https://www.delta-t.co.uk/wp-content/uploads/2016/11/ML2-Thetaprobe-UM.pdf (accessed on 24 February 2019).
- Davis Weather Station. Available online: http://www.davisweather.co.uk/ (accessed on 24 February 2019).
- Egido, A. GNSS Reflectometry for Land Remote Sensing Applications. Ph.D. Thesis, Polytechnic University of Catalonia, Barcelona, Spain, 2013. [Google Scholar]
- Demuth, H.; Beale, M.; Hagan, M. Neural Network Toolbox. For Use with MATLAB; The MathWorks Inc.: Natick, MA, USA, 2000. [Google Scholar]
- Fernandez-Moran, R.; Wigneron, J.P.; Lopez-Baeza, E.; Al-Yaari, A.; Coll-Pajaron, A.; Mialon, A.; Miernecki, M.; Parrens, M.; Salgado-Hernanz, P.M.; Schwank, M.; et al. Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field. Remote Sens. Environ. 2015, 170, 269–279. [Google Scholar] [CrossRef]
- Mironov, V.; Kerr, Y.; Wigneron, J.-P.; Kosolapova, L.; Demontoux, F. Temperature- and texture-dependent dielectric model for moist soils at 1.4 GHz. IEEE Geosci. Remote Sens. Lett. 2013, 10, 419–423. [Google Scholar] [CrossRef]
- Juglea, S.; Kerr, Y.H.; Mialon, A.; Wigneron, J.-P.; Lopez-Baeza, E.; Cano, A.; Delwart, S. Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia anchor station. Hydrol. Earth Syst. Sci. 2010, 14, 831–846. [Google Scholar] [CrossRef]
Measurement Mode | Channels Information |
---|---|
1-LD (3 min) | Channel 1: Reflected LHCP |
Channel 2: Direct RHCP | |
2-DR (0.5 min) | Channel 1: Direct RHCP |
Channel 2: Reflected RHCP |
Input | Regression Coefficient | RMSE (m3/m3) |
---|---|---|
Rrl | 0.88 | 0.020 |
Rrr | 0.78 | 0.027 |
Rrl and Rrr | 0.93 | 0.016 |
Rrl, Rrr, and EVI | 0.95 | 0.014 |
R2 | p-Value | Bias (m3/m3) | RMSE (m3/m3) | UbRMSE (m3/m3) | |
---|---|---|---|---|---|
Oceanpal | 0.9012 | <0.0001 | 0.005 | 0.0137 | 0.0128 |
Elbara | 0.6499 | <0.0001 | 0.041 | 0.0841 | 0.0734 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Lopez-Baeza, E.; Martin-Neira, M.; Fernandez-Moran, R.; Yang, L.; Navarro-Camba, E.A.; Egido, A.; Mollfulleda, A.; Li, W.; Cao, Y.; et al. Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station. Sensors 2019, 19, 1900. https://doi.org/10.3390/s19081900
Yin C, Lopez-Baeza E, Martin-Neira M, Fernandez-Moran R, Yang L, Navarro-Camba EA, Egido A, Mollfulleda A, Li W, Cao Y, et al. Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station. Sensors. 2019; 19(8):1900. https://doi.org/10.3390/s19081900
Chicago/Turabian StyleYin, Cong, Ernesto Lopez-Baeza, Manuel Martin-Neira, Roberto Fernandez-Moran, Lei Yang, Enrique A. Navarro-Camba, Alejandro Egido, Antonio Mollfulleda, Weiqiang Li, Yunchang Cao, and et al. 2019. "Intercomparison of Soil Moisture Retrieved from GNSS-R and from Passive L-Band Radiometry at the Valencia Anchor Station" Sensors 19, no. 8: 1900. https://doi.org/10.3390/s19081900