State Transition for Statistical SLAM Using Planar Features in 3D Point Clouds
<p>An example of the global and vehicle coordinate systems.</p> "> Figure 2
<p>Top view of the global and vehicle coordinate systems.</p> "> Figure 3
<p>Three pairs of predicted and segmented planes at time <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>125</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Multi-angle comparison of the predicted and segmented planes at time <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>125</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Three pairs of predicted and segmented planes at time <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Multi-angle comparison of the predicted and segmented planes at time <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p> "> Figure 6 Cont.
<p>Multi-angle comparison of the predicted and segmented planes at time <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Labeled Multi-Bernoulli Filter
2.1.1. Prediction
2.1.2. Update
2.2. KITTI Dataset
3. Proposed Transition Model
3.1. Plane Transition Model
3.2. Vehicle Transition Model
4. Implementation
Algorithm 1 Step-by-Step Implementation of the Proposed Transition Model | |
Require: vehicle states , , , and particles representing the distribution of each plane with label ℓ, for all labels | |
1: compute matrix | ▹ use Equation (28) |
2: generate a noise sample | ▹ diag(noise variances) |
3: generate , and | ▹ use Equation (36) |
4: compute matrix | ▹ use Equation (30) |
5: | |
6: for do | |
7: for do | |
8: | |
9: | |
10: end for | |
11: | ▹ compute the EAP estimate |
12: end for |
5. Simulation Results
5.1. Graphical Results
5.2. Numerical Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SLAM | Simultaneous Localization and Mapping |
EKF | Extended Kalman Filter |
RFS | Random Finite Set |
LMB | Labeled Multi-Bernoulli |
CT | Constant Turn |
ECT | Extended Constant Turn |
SMC | Sequential Monte Carlo |
EAP | Expected A Posteriori |
MAP | Maximum A Posteriori |
MSSE | Modified Selective Statistical Estimator |
MC | Monte Carlo |
References
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.D.; Leonard, J.J. Simultaneous Localization and Mapping: Present, Future, and the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Mullane, J.; Vo, B.; Adams, M.D.; Vo, B. A Random-Finite-Set Approach to Bayesian SLAM. IEEE Trans. Robot. 2011, 27, 268–282. [Google Scholar] [CrossRef]
- Davison, A.J. Real-Time Simultaneous Localisation and Mapping with a Single Camera. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; IEEE Computer Society: Washington, DC, USA, 2003; pp. 1403–1410. [Google Scholar]
- Thrun, S.; Koller, D.; Ghahramani, Z.; Durrant-Whyte, H.; Ng, A.Y. Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results. In Algorithmic Foundations of Robotics V; Springer Tracts in Advanced Robotics; Springer: Berlin, Germany, 2002; Volume 7, pp. 363–380. [Google Scholar]
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem; AAAI Press/The MIT Press: Cambridge, MA, USA, 2002; pp. 593–598. [Google Scholar]
- Rozsa, Z.; Sziranyi, T. Obstacle prediction for automated guided vehicles based on point clouds measured by a tilted LIDAR sensor. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2708–2720. [Google Scholar] [CrossRef]
- Fossel, J.; Hennes, D.; Claes, D.; Alers, S.; Tuyls, K. OctoSLAM: A 3D mapping approach to situational awareness of unmanned aerial vehicles. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 179–188. [Google Scholar]
- Im, J.; Im, S.; Jee, G. Extended line map-based precise vehicle localization using 3D LIDAR. Sensors 2018, 18, 3179. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Chung, W.K. Efficient SLAM algorithm with hybrid visual map in an indoor environment. In Proceedings of the 2007 International Conference on Control, Automation and Systems, Seoul, Korea, 17–20 October 2007; pp. 663–667. [Google Scholar]
- Chen, Z.; Samarabandu, J.; Rodrigo, R. Recent advances in simultaneous localization and map-building using computer vision. Adv. Robot. 2007, 21, 233–265. [Google Scholar] [CrossRef]
- Tomono, M. Robust 3D SLAM with a stereo camera based on an edge-point ICP algorithm. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 4306–4311. [Google Scholar]
- Sun, F.; Zhou, Y.; Li, C.; Huang, Y. Research on active SLAM with fusion of monocular vision and laser range data. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 6550–6554. [Google Scholar]
- Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; Fox, D. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 2012, 31, 647–663. [Google Scholar] [CrossRef]
- Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the RGB-D SLAM system. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 1691–1696. [Google Scholar]
- Fazli, S.; Kleeman, L. Simultaneous landmark classification, localization and map building for an advanced sonar ring. Robotica 2006, 25, 283–296. [Google Scholar] [CrossRef]
- Kim, P.; Coltin, B.; Kim, H.J. Linear RGB-D SLAM for Planar Environments. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Heidelberg, Germany, 2018; Volume 11208 LNCS, pp. 350–366. [Google Scholar]
- Grant, W.S.; Voorhies, R.C.; Itti, L. Efficient Velodyne SLAM with point and plane features. In Autonomous Robots; Springer: New York, NY, USA, 2018. [Google Scholar]
- Pietzsch, T. Planar features for visual SLAM. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Heidelberg, Germany, 2008; Volume 5243 LNAI, pp. 119–126. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef]
- Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260. [Google Scholar]
- Hoseinnezhad, R.; Bab-Hadiashar, A. An M-estimator for high breakdown robust estimation in computer vision. Comput. Vis. Image Underst. 2011, 115, 1145–1156. [Google Scholar] [CrossRef]
- Jazar, R.N. Vehicle Dynamics: Theory and Application; Springer: Berlin, Germany, 2014; Chapter 5; pp. 233–312. [Google Scholar]
- Jazar, R.N. Advanced Dynamics: Rigid Body, Multibody, and Aerospace Applications; Wiley: Hoboken, NJ, USA, 2011; Chapter 4; pp. 357–415. [Google Scholar]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1333–1364. [Google Scholar]
- Gostar, A.K.; Hoseinnezhad, R.; Bab-Hadiashar, A.; Liu, W. Sensor-Management for Multitarget Filters via Minimization of Posterior Dispersion. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2877–2884. [Google Scholar] [CrossRef]
- Gostar, A.K.; Hoseinnezhad, R.; Bab-Hadiashar, A. Sensor control for multi-object tracking using labeled multi-Bernoulli filter. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–8. [Google Scholar]
- Li, S.; Yi, W.; Hoseinnezhad, R.; Wang, B.; Kong, L. Multiobject Tracking for Generic Observation Model Using Labeled Random Finite Sets. IEEE Trans. Signal Process. 2018, 66, 368–383. [Google Scholar] [CrossRef]
- Reuter, S. Multi-Object Tracking Using Random Finite Sets. Ph.D. Thesis, Ulm University, Ulm, Germany, 2014. [Google Scholar]
- Deusch, H.; Reuter, S.; Dietmayer, K. The Labeled Multi-Bernoulli SLAM Filter. IEEE Signal Process. Lett. 2015, 22, 1561–1565. [Google Scholar] [CrossRef]
- Hossain, M.I.; Gostar, A.K.; Bab-Hadiashar, A.; Hoseinnezhad, R. Visual Mitosis Detection and Cell Tracking Using Labeled Multi-Bernoulli Filter. In Proceedings of the 21th International Conference on Information Fusion (FUSION), Cambridge, UK, 10–13 July 2018; pp. 2468–2472. [Google Scholar]
- Wang, X.; Hoseinnezhad, R.; Gostar, A.K.; Rathnayake, T.; Xu, B.; Bab-Hadiashar, A. Multi-sensor control for multi-object Bayes filters. Signal Process. 2018, 142, 260–270. [Google Scholar] [CrossRef]
- Gostar, A.K.; Hoseinnezhad, R.; Rathnayake, T.; Wang, X.; Bab-Hadiashar, A. Constrained Sensor Control for Labeled Multi-Bernoulli Filter Using Cauchy-Schwarz Divergence. IEEE Signal Process. Lett. 2017, 24, 1313–1317. [Google Scholar] [CrossRef]
- Bab-Hadiashar, A.; Suter, D. Robust segmentation of visual data using ranked unbiased scale estimate. Robotica 1999, 17, 649–660. [Google Scholar] [CrossRef]
Plane Pair 1 | Plane Pair 2 | Plane Pair 3 | |
---|---|---|---|
Predicted Plane | |||
Segmented Plane |
Plane Pair 1 | Plane Pair 2 | Plane Pair 3 | |
---|---|---|---|
Vertex Pair 1 | |||
Vertex Pair 2 | |||
Vertex Pair 3 | |||
Vertex Pair 4 |
Plane Pair 1 | Plane Pair 2 | Plane Pair 3 | |
---|---|---|---|
Angle Between Normal Vectors | / | / | / |
Plane Pair 1 | Plane Pair 2 | Plane Pair 3 | |
---|---|---|---|
Predicted Plane | |||
Segmented Plane |
Plane Pair 1 | Plane Pair 2 | Plane Pair 3 | |
---|---|---|---|
Vertex Pair 1 | |||
Vertex Pair 2 | |||
Vertex Pair 3 | |||
Vertex Pair 4 |
Plane Pair 1 | Plane Pair 2 | Plane Pair 3 | |
---|---|---|---|
Angle Between Normal Vectors | / | / | / |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gostar, A.K.; Fu, C.; Chuah, W.; Hossain, M.I.; Tennakoon, R.; Bab-Hadiashar, A.; Hoseinnezhad, R. State Transition for Statistical SLAM Using Planar Features in 3D Point Clouds. Sensors 2019, 19, 1614. https://doi.org/10.3390/s19071614
Gostar AK, Fu C, Chuah W, Hossain MI, Tennakoon R, Bab-Hadiashar A, Hoseinnezhad R. State Transition for Statistical SLAM Using Planar Features in 3D Point Clouds. Sensors. 2019; 19(7):1614. https://doi.org/10.3390/s19071614
Chicago/Turabian StyleGostar, Amirali Khodadadian, Chunyun Fu, Weiqin Chuah, Mohammed Imran Hossain, Ruwan Tennakoon, Alireza Bab-Hadiashar, and Reza Hoseinnezhad. 2019. "State Transition for Statistical SLAM Using Planar Features in 3D Point Clouds" Sensors 19, no. 7: 1614. https://doi.org/10.3390/s19071614
APA StyleGostar, A. K., Fu, C., Chuah, W., Hossain, M. I., Tennakoon, R., Bab-Hadiashar, A., & Hoseinnezhad, R. (2019). State Transition for Statistical SLAM Using Planar Features in 3D Point Clouds. Sensors, 19(7), 1614. https://doi.org/10.3390/s19071614