Biosensors for Epilepsy Management: State-of-Art and Future Aspects
<p>Representative mechanism of epileptogenesis due to the release of Fe<sup>2+</sup> ion in the extracellular space.</p> "> Figure 2
<p>Schematics of biomarkers for the prediction of the epilepsy.</p> "> Figure 3
<p>Schematic of (<b>A</b>) neural signals (EEGs, ECoGs, LFPs, and spikes) and their properties. (<b>B</b>) EEG electrode on the skull, ECoG electrode on the surface of brain, and penetrating electrodes: three main types of intraparenchymal (intracortical) sensors now in use are illustrated: platform array, an array of electrodes emanating from a substrate that rests on the cortical surface; multisite probe, with contacts along a flattened shank; and microwire assemblies, consisting of fine wires (reproduced here from [<a href="#B74-sensors-19-01525" class="html-bibr">74</a>] with copyright permission).</p> "> Figure 4
<p>Structure and modification of microelectrode array (MEA). (<b>A</b>) Silicon-based MEA with four shafts [<a href="#B92-sensors-19-01525" class="html-bibr">92</a>]. The 16 round sites were used as recording sites to detect electrophysiological and electrochemical signals, and the three rectangular sites were used as auxiliary sites in the three-electrode system. (<b>B</b>) The electrophysiological recording sites are modified with PtNP and glutamate recording sites have three different layers (PtNP/mPD/Gluox) modification. The thicknesses of PtNP layer and the enzyme layer were 3.2 and 1.5 μm, respectively. (<b>C</b>) The AFM photograph of the surface of Gluox enzyme layer. Surface irregularities make Gluox more accessible to glutamate. (<b>D</b>) The physical view after package, the size of this sensor is close to the pencil head and the weigh is about 1 g [<a href="#B68-sensors-19-01525" class="html-bibr">68</a>]. (Reproduced here with copyright permission [<a href="#B68-sensors-19-01525" class="html-bibr">68</a>]).</p> "> Figure 5
<p>Schematic representation of various types of conducting polymers, nanomaterials and their bio-nanocomposites. (Reproduced here with copyright permission [<a href="#B97-sensors-19-01525" class="html-bibr">97</a>]).</p> "> Figure 6
<p>Generalized medication technique with respect to advanced synergistic approach in therapeutics.</p> "> Figure 7
<p>Proliferation of teleneurology studies. (<b>a</b>) A graph showing the volume of published studies of telehealth and care delivery for stroke (grey) and other neurological conditions (orange) from 1992 to 2017, as listed on PubMed. The past two decades have seen a substantial increase in the volume of these studies. (<b>b</b>) A graph showing the volume of published studies of smartphones (grey) and wearable sensors (orange) for neurological conditions from 1992 to 2017, as listed on PubMed. Few studies were conducted before 2015, but the number has since increased exponentially. (<b>c</b>) The number of mobile broadband subscriptions, globally. A graph of smartphone ownership (measured by a number of global broadband subscriptions) from 2012 to 2022. Smartphone (Ericsson Mobility Report, 2017) ownership rates have steadily increased; by 2020, 70% of the world’s population is projected to own a smartphone (images reproduced from [<a href="#B22-sensors-19-01525" class="html-bibr">22</a>] with copyright permission from Nature Review: Neurology).</p> "> Figure 8
<p>Illustration of future epilepsy biosensing technology in order to monitor epilepsy at POC application. (PM = personalized medicines).</p> "> Figure 9
<p>Utilization of a multimodal system for charting and seizure prediction for PoC application.</p> ">
Abstract
:1. Epilepsy as CNS Dysfunction & Therapeutic Challenges
2. Analytical Tools for Epilepsy Detection
3. Nano-Bio-Sensing Regime Remediation
4. State of the Art Epilepsy Bio-Sensing Techniques
5. Challenges and Future Perspective
6. Viewpoint and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dumanis, S.B.; French, J.A.; Bernard, C.; Worrell, G.A.; Fureman, B.E. Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation institute workshop. eNeuro 2017, 4. [Google Scholar] [CrossRef]
- Dalic, L.; Cook, M.J. Managing drug-resistant epilepsy: Challenges and solutions. Neuropsychiatr. Dis. Treat. 2016, 12, 2605. [Google Scholar] [CrossRef]
- Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet 2015, 385, 884–898. [Google Scholar] [CrossRef]
- Najm, I.M. Mapping brain networks in patients with focal epilepsy. Lancet Neurol. 2018, 17, 295–297. [Google Scholar] [CrossRef]
- Organización Mundial de la Salud; Programme for Neurological Diseases, World Health Organization; Global Campaign against Epilepsy, Programme for Neurological Diseases, Neuroscience (World Health Organization); International Bureau for Epilepsy, World Health Organization; Department of Mental Health, Substance Abuse, International Bureau of Epilepsy, International League against Epilepsy. Atlas: Epilepsy Care in the World; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Fisher, R.S.; Boas, W.V.E.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J., Jr. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Galanopoulou, A.S.; Buckmaster, P.S.; Staley, K.J.; Moshé, S.L.; Perucca, E.; Engel, J., Jr.; Löscher, W.; Noebels, J.L.; Pitkänen, A.; Stables, J. Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia 2012, 53, 571–582. [Google Scholar] [CrossRef]
- Beghi, E. Addressing the burden of epilepsy: Many unmet needs. Pharmacol. Res. 2016, 107, 79–84. [Google Scholar] [CrossRef]
- Oby, E.; Janigro, D. The Blood–Brain Barrier and Epilepsy. Epilepsia 2006, 47, 1761–1774. [Google Scholar] [CrossRef]
- Van Vliet, E.; da Araujo, S.; Redeker, S.; van Schaik, R.; Aronica, E.; Gorter, J. Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2006, 130, 521–534. [Google Scholar] [CrossRef]
- Gorter, J.A.; van Vliet, E.A.; Aronica, E. Status epilepticus, blood–brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 2015, 49, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Marchi, N.; Banjara, M.; Janigro, D. Blood–brain barrier, bulk flow, and interstitial clearance in epilepsy. J. Neurosci. Methods 2016, 260, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Martinc, B.; Grabnar, I.; Vovk, T. The Role of Reactive Species in Epileptogenesis and Influence of Antiepileptic Drug Therapy on Oxidative Stress. Curr. Neuropharmacol. 2012, 10, 328–343. [Google Scholar] [CrossRef]
- Quaye, I.K. Extracellular hemoglobin: The case of a friend turned foe. Front. Physiol. 2015, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Cross, J.H.; D’souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef]
- Lawson, J.A.; Scheffer, I.E. Therapeutic use of medicinal cannabis in difficult to manage epilepsy. Br. J. Clin. Pharmacol. 2018, 84, 2488–2490. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, A.; Vashist, A.; Tiwari, S.; Sharmin, E.; Ahmad, S.; Bhattacharya, J. Nanotechnology for Therapeutics. In Advances in Personalized Nanotherapeutics; Springer: Cham, Switzerland, 2017; pp. 25–40. [Google Scholar]
- Engel, J., Jr.; Pitkänen, A.; Loeb, J.A.; Dudek, F.E.; Bertram, E.H., III; Cole, A.J.; Moshé, S.L.; Wiebe, S.; Jensen, F.E.; Mody, I. Epilepsy biomarkers. Epilepsia 2013, 54, 61–69. [Google Scholar] [CrossRef]
- Ryvlin, P.; Ciumas, C.; Wisniewski, I.; Beniczky, S. Wearable devices for sudden unexpected death in epilepsy prevention. Epilepsia 2018, 59, 61–66. [Google Scholar] [CrossRef]
- Torch, W.C. Biosensors, communicators, and controllers monitoring eye movement and methods for using them. U.S. Patent 7,488,294, 10 February 2009. [Google Scholar]
- Blume, W.T.; Lüders, H.O.; Mizrahi, E.; Tassinari, C.; van Emde Boas, W.; Engel, E.J., Jr. Glossary of descriptive terminology for ictal semiology: Report of the ILAE task force on classification and terminology. Epilepsia 2001, 42, 1212–1218. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Glidden, A.M.; Holloway, M.R.; Birbeck, G.L.; Schwamm, L.H. Teleneurology and mobile technologies: The future of neurological care. Nat. Rev. Neurol. 2018, 14, 285. [Google Scholar] [CrossRef]
- Pizarro, D.; Ilyas, A.; Toth, E.; Romeo, A.; Riley, K.O.; Esteller, R.; Vlachos, I.; Pati, S. Automated detection of mesial temporal and temporoperisylvian seizures in the anterior thalamic nucleus. Epilepsy Res. 2018, 146, 17–20. [Google Scholar] [CrossRef]
- Fisher, R.S. Bad information in epilepsy care. Epilepsy Behav. 2017, 67, 133–134. [Google Scholar] [CrossRef] [PubMed]
- King-Stephens, D.; Mirro, E.; Weber, P.B.; Laxer, K.D.; van Ness, P.C.; Salanova, V.; Spencer, D.C.; Heck, C.N.; Goldman, A.; Jobst, B. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia 2015, 56, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Revankar, G.S.; Winkler, M.K.; Major, S.; Schoknecht, K.; Heinemann, U.; Woitzik, J.; Claassen, J.; Hartings, J.A.; Dreier, J.P. Spreading depolarizations and seizures in clinical subdural electrocorticographic recordings. In Seizures in Critical Care; Springer: Cham, Switzerland, 2017; pp. 77–90. [Google Scholar]
- Goldenholz, D.M.; Tharayil, J.J.; Kuzniecky, R.; Karoly, P.; Theodore, W.H.; Cook, M.J. Simulating clinical trials with and without intracranial EEG data. Epilepsia Open 2017, 2, 156–161. [Google Scholar] [CrossRef]
- Duong, T.Q.; Kim, D.-S.; Uğurbil, K.; Kim, S.-G. Localized cerebral blood flow response at submillimeter columnar resolution. Proc. Natl. Acad. Sci. USA 2001, 98, 10904–10909. [Google Scholar] [CrossRef]
- Hoge, R.D.; Atkinson, J.; Gill, B.; Crelier, G.R.; Marrett, S.; Pike, G.B. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. USA 1999, 96, 9403–9408. [Google Scholar] [CrossRef] [PubMed]
- Shmuel, A.; Yacoub, E.; Pfeuffer, J.; van de Moortele, P.-F.; Adriany, G.; Hu, X.; Ugurbil, K. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 2002, 36, 1195–1210. [Google Scholar] [CrossRef]
- Cohen, M.S.; Turner, R.; Cheng, H.-M.; Brady, T.J.; Rosen, B.R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Nadl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.M.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Nadl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef]
- Lu, H.; Golay, X.; Pekar, J.J.; van Zijl, P.C. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2003, 50, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; Ugurbil, K. High-resolution functional magnetic resonance imaging of the animal brain. Methods 2003, 30, 28–41. [Google Scholar] [CrossRef]
- Pisauro, M.A.; Fouragnan, E.; Retzler, C.; Philiastides, M.G. Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-Fmri. Nat. Commun. 2017, 8, 15808. [Google Scholar] [CrossRef]
- Hao, Y.; Khoo, H.M.; von Ellenrieder, N.; Zazubovits, N.; Gotman, J. DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning. Neuroimage: Clin. 2018, 17, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Elger, C.E.; Hoppe, C. Diagnostic challenges in epilepsy: Seizure under-reporting and seizure detection. Lancet Neurol. 2018, 17, 279–288. [Google Scholar] [CrossRef]
- Kaur, M.; Prakash, N.R.; Kalra, P. Early Seizure Detection Techniques: A Review. Indian J. Sci. Technol. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Tsytsarev, V.; Maslov, K.I.; Yao, J.; Parameswar, A.R.; Demchenko, A.V.; Wang, L.V. In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J. Neurosci. Methods 2012, 203, 136–140. [Google Scholar] [CrossRef]
- De Freitas, M.L.; de Oliveira, C.V.; Mello, F.K.; Funck, V.R.; Fighera, M.R.; Royes, L.F.F.; Furian, A.F.; Larrick, J.W.; Oliveira, M.S. Na+, K+-ATPase Activating Antibody Displays in vitro and in vivo Beneficial Effects in the Pilocarpine Model of Epilepsy. Neuroscience 2018, 377, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.; Holland, J.P. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J. Nucl. Med. 2018, 59, 382–389. [Google Scholar] [CrossRef]
- Vasta, R.; Cerasa, A.; Gramigna, V.; Augimeri, A.; Olivadese, G.; Pellegrino, G.; Martino, I.; Machado, A.; Cai, Z.; Caracciolo, M. The movement time analyser task investigated with functional near infrared spectroscopy: An ecologic approach for measuring hemodynamic response in the motor system. Aging Clin. Exp. Res. 2017, 29, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Tsytsarev, V.; Rao, B.; Maslov, K.I.; Li, L.; Wang, L.V. Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J. Neurosci. Methods 2013, 216, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Shin, J.G.; Qureshi, M.M.; Chung, E.; Eom, T.J. Deep brain optical coherence tomography angiography in mice: In vivo, noninvasive imaging of hippocampal formation. Sci. Rep. 2018, 8, 11614. [Google Scholar] [CrossRef]
- Binder, D.K.; Haut, S.R. Toward new paradigms of seizure detection. Epilepsy Behav. 2013, 26, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Eberle, M.; Rodriguez, C.; Szu, J.; Wang, Y.; Hsu, M.; Binder, D.; Park, B. Visualizing Cortical Tissue Optical Changes During Seizure Activity with Optical Coherence Tomography. In Video Bioinformatics; Springer: Cham, Switzerland, 2015; pp. 119–132. [Google Scholar]
- Calabresi, P.A.; Balcer, L.J.; Frohman, E.M. Optical Coherence Tomography in Neurologic Diseases; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Park, B.H.; Pierce, M.C.; Cense, B.; Yun, S.H.; Mujat, M.; Tearney, G.J.; Bouma, B.E.; de Boer, J.F. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. Opt. Express 2005, 13, 3931–3944. [Google Scholar] [CrossRef] [PubMed]
- Akkad, I.; Kundu, S.; Miller, A.; Ramachandran, J.; Shetty, V. Acute Stroke of the Insular Cortex Leading to Heart Failure. J. Med Cases 2016, 7, 94–97. [Google Scholar] [CrossRef]
- Kandala, V.K.; Vadaparthi, J.K. Study of Incidence and Pattern of ECG Changes in Cerebrovascular Accidents. Radiology 2018, 3, 107–109. [Google Scholar]
- Simos, P.G.; Rezaie, R.; Papanicolaou, A.C. Applications of Magnetoencephalography in Epilepsy and Tumor Surgery. In Epilepsy Surgery and Intrinsic Brain Tumor Surgery; Springer: Cham, Switzerland, 2019; pp. 51–65. [Google Scholar]
- Ebersole, J.S. Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia 1997, 38, S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Miyajima, M.; Yamakawa, T.; Abe, E.; Suzuki, Y.; Sawada, Y.; Kano, M.; Maehara, T.; Ohta, K.; Sasai-Sakuma, T.; et al. Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features. IEEE Trans. Biomed. Eng. 2016, 63, 1321–1332. [Google Scholar] [PubMed]
- Ulate-Campos, A.; Coughlin, F.; Gaínza-Lein, M.; Fernández, I.S.; Pearl, P.L.; Loddenkemper, T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 2016, 40, 88–101. [Google Scholar] [CrossRef]
- Poh, M.-Z.; Loddenkemper, T.; Reinsberger, C.; Swenson, N.C.; Goyal, S.; Sabtala, M.C.; Madsen, J.R.; Picard, R.W. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 2012, 53, e93–e97. [Google Scholar] [CrossRef]
- Milošević, M.; van de Vel, A.; Bonroy, B.; Ceulemans, B.; Lagae, L.; Vanrumste, B.; van Huffel, S. Automated detection of tonic–clonic seizures using 3-d accelerometry and surface electromyography in pediatric patients. IEEE J. Biomed. Health Inform. 2016, 20, 1333–1341. [Google Scholar] [CrossRef]
- Becq, G.; Kahane, P.; Minotti, L.; Bonnet, S.; Guillemaud, R. Classification of epileptic motor manifestations and detection of tonic–clonic seizures with acceleration norm entropy. IEEE Trans. Biomed. Eng. 2013, 60, 2080–2088. [Google Scholar] [CrossRef]
- Van de Vel, A.; Verhaert, K.; Ceulemans, B. Critical evaluation of four different seizure detection systems tested on one patient with focal and generalized tonic and clonic seizures. Epilepsy Behav. 2014, 37, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, A.; Bourgeois, B.; Treves, S.T.; Schachter, S.C.; Guttag, J. Impact of patient-specificity on seizure onset detection performance, in: Engineering in Medicine and Biology Society. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 4110–4114. [Google Scholar]
- Rahimpour, A.; Noubari, H.A.; Kazemian, M. A case-study of NIRS application for infant cerebral hemodynamic monitoring: A report of data analysis for feature extraction and infant classification into healthy and unhealthy. Inf. Med. Unlocked 2018, 11, 44–50. [Google Scholar] [CrossRef]
- Heers, M.; Rampp, S.; Kaltenhäuser, M.; Pauli, E.; Rauch, C.; Dölken, M.T.; Stefan, H. Detection of epileptic spikes by magnetoencephalography and electroencephalography after sleep deprivation. Seizure 2010, 19, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Manickam, P.; Kaushik, A.; Karunakaran, C.; Bhansali, S. Recent advances in cytochrome c biosensing technologies. Biosens. Bioelectron. 2017, 87, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Vabbina, P.K.; Atluri, V.; Shah, P.; Vashist, A.; Jayant, R.D.; Yandart, A.; Nair, M. Electrochemical monitoring-on-chip (E-MoC) of HIV-infection in presence of cocaine and therapeutics. Biosens. Bioelectron. 2016, 86, 426–431. [Google Scholar] [CrossRef]
- Kaushik, A.; Tiwari, S.; Jayant, R.D.; Marty, A.; Nair, M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 2016, 75, 254–272. [Google Scholar] [CrossRef]
- Gray, M.; Meehan, J.; Ward, C.; Langdon, S.P.; Kunkler, I.H.; Murray, A.; Argyle, D. Implantable biosensors and their contribution to the future of precision medicine. Vet. J. 2018, 239, 21–29. [Google Scholar] [CrossRef]
- Jamieson, B.; Bigelow, M.E.G. In Vivo Biosensor. US Patent No. 9,883,826, 6 February 2018. [Google Scholar]
- Milošević, M.; van de Vel, A.; Cuppens, K.; Bonroy, B.; Ceulemans, B.; Lagae, L.; Vanrumste, B.; van Huffel, S. Feature selection methods for accelerometry-based seizure detection in children. Med Boil. Eng. Comput. 2017, 55, 151–165. [Google Scholar] [CrossRef]
- Li, Z.; Song, Y.; Xiao, G.; Gao, F.; Xu, S.; Wang, M.; Zhang, Y.; Guo, F.; Liu, J.; Xia, Y.; et al. Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats. Anal. Biochem. 2018, 550, 123–131. [Google Scholar] [CrossRef]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Solanki, P.R.; Kaushik, A.; Agrawal, V.V.; Malhotra, B.D. Nanostructured metal oxide-based biosensors. NPG Asia Mater. 2011, 3, 17. [Google Scholar] [CrossRef]
- Pitkänen, A.; Löscher, W.; Vezzani, A.; Becker, A.J.; Simonato, M.; Lukasiuk, K.; Gröhn, O.; Bankstahl, J.P.; Friedman, A.; Aronica, E. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016, 15, 843–856. [Google Scholar] [CrossRef]
- Walker, L.E.; Janigro, D.; Heinemann, U.; Riikonen, R.; Bernard, C.; Patel, M. WONOEP appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia 2016, 57, 1354–1362. [Google Scholar] [CrossRef]
- Koepp, M.J. The help of biomarkers in the prevention of epilepsy. Lancet Neurol. 2016, 15, 782–784. [Google Scholar] [CrossRef]
- Fattahi, P.; Yang, G.; Kim, G.; Abidian, M.R. A Review of Organic and Inorganic Biomaterials for Neural Interfaces. Adv. Mater. 2014, 26, 1846–1885. [Google Scholar] [CrossRef]
- Bucher, E.S.; Wightman, R.M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 2015, 8, 239–261. [Google Scholar] [CrossRef]
- Tedjo, W.; Nejad, J.E.; Feeny, R.; Yang, L.; Henry, C.S.; Tobet, S.; Chen, T. Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images. Biosens. Bioelectron. 2018, 114, 78–88. [Google Scholar] [CrossRef]
- Ruffini, G.; Dunne, S.; Farrés, E.; Marco-Pallarés, J.; Ray, C.; Mendoza, E.; Silva, R.; Grau, C. A dry electrophysiology electrode using CNT arrays. Sens. Actuators A Phys. 2006, 132, 34–41. [Google Scholar] [CrossRef]
- Krishnan, A.; Dujardin, E.; Ebbesen, T.; Yianilos, P.; Treacy, M. Young’s modulus of single-walled nanotubes. Phys. Rev. B 1998, 58, 14013. [Google Scholar] [CrossRef]
- Ruffini, G.; Dunne, S.; Fuentemilla, L.; Grau, C.; Farres, E.; Marco-Pallarés, J.; Watts, P.; Silva, S. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sens. Actuators A Phys. 2008, 144, 275–279. [Google Scholar] [CrossRef]
- Okada, S.; Bartelle, B.B.; Li, N.; Breton-Provencher, V.; Lee, J.J.; Rodriguez, E.; Melican, J.; Sur, M.; Jasanoff, A. Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat. Nanotechnol. 2018, 13, 473–477. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, H.; Yan, J.; Zhang, C.; Li, Y.; Wang, M.; Tan, W.; Liu, J.; Pan, Y. Multifunctional Porous Iron Oxide Nanoagents for MRI and Photothermal/Chemo Synergistic Therapy. Bioconjugate Chem. 2018, 29, 1283–1290. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.L.; Zhang, Y.F.; Gao, F.; Li, G.L.; He, Y.; Peng, M.L.; Fan, H.M. Magnetic nanoparticles based cancer therapy: Current status and applications. Sci. China Life Sci. 2018, 61, 400–414. [Google Scholar] [CrossRef]
- Fan, H.-M.; Olivo, M.; Shuter, B.; Yi, J.-B.; Bhuvaneswari, R.; Tan, H.-R.; Xing, G.-C.; Ng, C.-T.; Liu, L.; Lucky, S.S. Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. J. Am. Chem. Soc. 2010, 132, 14803–14811. [Google Scholar] [CrossRef]
- Ur Rahman, O.; Mohapatra, S.C.; Ahmad, S. Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater. Chem. Phys. 2012, 132, 196–202. [Google Scholar] [CrossRef]
- Atanasijevic, T.; Shusteff, M.; Fam, P.; Jasanoff, A. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl. Acad. Sci. USA 2006, 103, 14707–14712. [Google Scholar] [CrossRef]
- Zhu, K.; Deng, Z.; Liu, G.; Hu, J.; Liu, S. Photoregulated cross-linking of superparamagnetic iron oxide nanoparticle (spion) loaded hybrid nanovectors with synergistic drug release and magnetic resonance (MR) imaging enhancement. Macromolecules 2017, 50, 1113–1125. [Google Scholar] [CrossRef]
- Dale, N.; Hatz, S.; Tian, F.; Llaudet, E. Listening to the brain: Microelectrode biosensors for neurochemicals. Trends Biotechnol. 2005, 23, 420–428. [Google Scholar] [CrossRef]
- Shariatgorji, M.; Nilsson, A.; Goodwin, R.J.; Källback, P.; Schintu, N.; Zhang, X.; Crossman, A.R.; Bezard, E.; Svenningsson, P.; Andren, P.E. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 2014, 84, 697–707. [Google Scholar] [CrossRef]
- Olesti, E.; Rodríguez-Morató, J.; Gomez-Gomez, A.; Ramaekers, J.G.; de la Torre, R.; Pozo, O.J. Quantification of endogenous neurotransmitters and related compounds by liquid chromatography coupled to tandem mass spectrometry. Talanta 2019, 192, 93–102. [Google Scholar] [CrossRef]
- Martins, N.R.B.; Erlhagen, W.; Freitas, R. Action potential monitoring using neuronanorobots: Neuroelectric nanosensors. Int. J. Nanomater. Nanostructures 2015, 1, 20–41. [Google Scholar]
- Clark, H.A.; Harjes, D.I.; Dubach, J.M. Intracellular Nanosensors and Methods for Their Introduction into Cells. US Patent 8,263,358, 11 September 2012. [Google Scholar]
- Fan, X.; Song, Y.; Ma, Y.; Zhang, S.; Xiao, G.; Yang, L.; Xu, H.; Zhang, D.; Cai, X. In Situ Real-Time Monitoring of Glutamate and Electrophysiology from Cortex to Hippocampus in Mice Based on a Microelectrode Array. Sensors 2017, 17, 61. [Google Scholar] [CrossRef]
- Baytak, A.K.; Aslanoglu, M. A novel sensitive method for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan using a voltammetric platform based on carbon black nanoballs. Arab. J. Chem. 2018. [Google Scholar] [CrossRef]
- Pang, P.; Yan, F.; Li, H.; Li, H.; Zhang, Y.; Wang, H.; Wu, Z.; Yang, W. Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Anal. Methods 2016, 8, 4912–4918. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Huang, L.; Hu, N.; Liu, W.; Liu, Y.; Li, S.; Yang, C.; Suo, Y.; Wang, J. Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchim. Acta 2018, 185, 234. [Google Scholar] [CrossRef]
- Du, M.; Xu, X.; Yang, L.; Guo, Y.; Guan, S.; Shi, J.; Wang, J.; Fang, Y. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosens. Bioelectron. 2018, 105, 109–115. [Google Scholar] [CrossRef]
- Moon, J.-M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.-B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron. 2018, 102, 540–552. [Google Scholar] [CrossRef]
- Keefer, E.W.; Botterman, B.R.; Romero, M.I.; Rossi, A.F.; Gross, G.W. Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 2008, 3, 434. [Google Scholar] [CrossRef]
- Andrews, R.J. Neuromodulation: Deep brain stimulation, sensory neuroprostheses, and the neural–electrical interface. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2009; pp. 127–139. [Google Scholar]
- Batra, B.; Pundir, C.S. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens. Bioelectron. 2013, 47, 496–501. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Janagam, D.R.; Lowe, T.L. Overcoming the blood-brain barrier in chemotherapy treatment of pediatric brain tumors. Pharm. Res. 2014, 31, 531–540. [Google Scholar] [CrossRef]
- Meyyappan, M. Nano biosensors for neurochemical monitoring. Nano Converg. 2015, 2, 18. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Ahmadi, S.H.; Mahmoudabadi, Z.S.; Khoshroo, A. Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement 2016, 91, 162–167. [Google Scholar] [CrossRef]
- Dowran, M.; Kumar, A.; Lawrie, B.J.; Pooser, R.C.; Marino, A.M. Quantum-enhanced plasmonic sensing. Optica 2018, 5, 628–633. [Google Scholar] [CrossRef]
- Katz, O.; Small, E.; Bromberg, Y.; Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics 2011, 5, 372. [Google Scholar] [CrossRef]
- Lau, H.-K.; Clerk, A.A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 2018, 9, 4320. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Li, C.-C.; Tang, B.; Zhang, C.-Y. Advances in the integration of quantum dots with various nanomaterials for biomedical and environmental applications. Analyst 2018, 143, 2469–2478. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Kiraly, B.; Weiss, P.S.; Huang, T.J. Molecular plasmonics for biology and nanomedicine. Nanomedicine 2012, 7, 751–770. [Google Scholar] [CrossRef] [PubMed]
- Abedini, M.; Tekieh, T.; Sasanpour, P. Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis. Front. Comput. Neurosci. 2018, 12, 61. [Google Scholar] [CrossRef]
- Irwin, M.S.; Thorniley, M.S.; Dore, C.J.; Green, C.J. Near infra-red spectroscopy: A non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps. Br. J. Plast. Surg. 1995, 48, 14–22. [Google Scholar] [CrossRef]
- Steinhoff, B.J.; Herrendorf, G.; Kurth, C. Ictal near infrared spectroscopy in temporal lobe epilepsy: A pilot study. Seizure 1996, 5, 97–101. [Google Scholar] [CrossRef]
- Vlasov, K.; van Dort, C.J.; Solt, K. Optogenetics and Chemogenetics. In Methods in Enzymology; Eckenhoff, R.G., Dmochowski, I.J., Eds.; Elsevier, Academic Press: Amsterdam, The Netherlands, 2018; Chapter 11; pp. 181–196. [Google Scholar] [CrossRef]
- Bang, J.; Kim, H.Y.; Lee, H. Optogenetic and Chemogenetic Approaches for Studying Astrocytes and Gliotransmitters. Exp. Neurobiol. 2016, 25, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Lopatář, J.; Dale, N.; Frenguelli, B.G. Minor contribution of ATP P2 receptors to electrically-evoked electrographic seizure activity in hippocampal slices: Evidence from purine biosensors and P2 receptor agonists and antagonists. Neuropharmacology 2011, 61, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Saleem, W.; Broderick, P.A. Biomarkers for Brain Disorders Electrochemically Detected by BRODERICK PROBE® Microelectrodes/Biosensors. J. Biosens. Bioelectron. S 2013, 12, 2. [Google Scholar] [CrossRef]
- Broderick, P.A. Cocaine and Neuromolecular Imaging of Neurotransmitters in the Brain: BRODERICK PROBE® Laurate Nanobiosensors in Mesocorticolimbic Neurons and the Nucleus Accumbens: Sex and Genes. In Neuropathology of Drug Addictions and Substance Misuse; Elsevier, Academic Press: Amsterdam, The Netherlands, 2016; pp. 74–85. [Google Scholar] [CrossRef]
- Cash, K.J.; Li, C.; Xia, J.; Wang, L.V.; Clark, H.A. Optical drug monitoring: Photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo. ACS Nano 2015, 9, 1692–1698. [Google Scholar] [CrossRef]
- Bayer, C.L.; Luke, G.P.; Emelianov, S.Y. Photoacoustic imaging for medical diagnostics. Acoust. Today 2012, 8, 15–23. [Google Scholar] [CrossRef]
- Fergus, P.; Hussain, A.; Hignett, D.; Al-Jumeily, D.; Abdel-Aziz, K.; Hamdan, H. A machine learning system for automated whole-brain seizure detection. Appl. Comput. Inform. 2016, 12, 70–89. [Google Scholar] [CrossRef]
- Senders, J.T.; Zaki, M.M.; Karhade, A.V.; Chang, B.; Gormley, W.B.; Broekman, M.L.; Smith, T.R.; Arnaout, O. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 2018, 160, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Senders, J.T.; Staples, P.C.; Karhade, A.V.; Zaki, M.M.; Gormley, W.B.; Broekman, M.L.D.; Smith, T.R.; Arnaout, O. Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review. World Neurosurg. 2018, 109, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Sejdic, E.; Falk, T.H. Signal Processing and Machine Learning for Biomedical Big Data; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–600. [Google Scholar]
- Haddad, P.; Servati, A.; Soltanian, S.; Ko, F.; Servati, P. Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring. Biosensors 2018, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ghaffari, R.; Kim, D.-H. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 2017, 1, 0049. [Google Scholar] [CrossRef]
- Vashist, A.; Kaushik, A.; Vashist, A.; Sagar, V.; Ghosal, A.; Gupta, Y.; Ahmad, S.; Nair, M. Advances in Carbon Nanotubes–Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv. Healthc. Mater. 2018, 7, 1701213. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, A.; Tiwari, S.; Mishra, A.; Vashist, A.; Rawat, N.K.; Ahmad, S.; Bhattacharya, J. Design and Engineering of Nanogels. In Nanogels for Biomedical Applications; Royal Society of Chemistry: Cambridge, UK, 2017; pp. 9–28. [Google Scholar]
- Nasr, B.; Chatterton, R.; Yong, J.; Jamshidi, P.; D’Abaco, G.; Bjorksten, A.; Kavehei, O.; Chana, G.; Dottori, M.; Skafidas, E. Self-Organized Nanostructure Modified Microelectrode for Sensitive Electrochemical Glutamate Detection in Stem Cells-Derived Brain Organoids. Biosensors 2018, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lhatoo, S.D. Seizure detection: Do current devices work? And when can they be useful? Curr. Neurol. Neurosci. Rep. 2018, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Meritam, P.; Ryvlin, P.; Beniczky, S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic–clonic seizures: A field study. Epilepsia 2018, 59, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Beniczky, S.; Polster, T.; Kjaer, T.W.; Hjalgrim, H. Detection of generalized tonic–clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study. Epilepsia 2013, 54, e58–e61. [Google Scholar] [CrossRef] [PubMed]
- Shieh, P.B.; Acsadi, G.; Mueller-Felber, W.; Crawford, T.O.; Richardson, R.; Natarajan, N.; Castro, D.; Gheuens, S.; Bhan, I.; Gambino, G. Safety and Efficacy of Nusinersen in Infants/Children with Spinal Muscular Atrophy (SMA): Part 1 of the Phase 2 EMBRACE Study (P2. 324). Neurology 2018, 90, p2.234. [Google Scholar] [CrossRef]
- Mehta, D.; Deshmukh, T.; Sundaresan, Y.B.; Kumaresan, P. Continuous Monitoring and Detection of Epileptic Seizures Using Wearable Device. In Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2019. [Google Scholar]
- Advanced Brain Monitoring. Available online: https://www.advancedbrainmonitoring.com/.
- SeizAlam. Available online: http://seizalarm.com/.
- Embrace2. Available online: https://www.empatica.com/product-embrace (accessed on 27 March 2019).
- RNS. Available online: https://www.neuropace.com/.
- SENTINEL BRAIN. Available online: https://speacsystem.com/speac-system-seizure-monitor/speac-system-product-overview/ (accessed on 27 March 2019).
- Ictal Care. Available online: https://ictalcare.com/.
- SMART. Available online: http://oedk.rice.edu/Sys/PublicProfile/8104051 (accessed on 27 March 2019).
- Neuroon. Available online: https://neuroonopen.com/.
- ActiGraph. Available online: https://actigraphcorp.com/.
- INOpulse. Available online: http://www.bellerophon.com/.
- Garmin. Available online: https://www.garmin.com/.
- Hexoskin. Available online: https://www.hexoskin.com/.
- Affectiva. Available online: https://www.affectiva.com/.
- Basic Peak. Available online: https://www.intel.com/content/www/us/en/support/products/87752/emerging-technologies/wearable-devices/basis-products/basis-peak.html (accessed on 27 March 2019).
- Hobo. Available online: http://www.hoboheeze.nl/engels/projects.html (accessed on 27 March 2019).
- Recola. Available online: http://www.bhutanbrain.com/.
- VNS. Available online: https://us.livanova.cyberonics.com//.
- Vigil-AIDE. Available online: http://www.dctassociates.com.au/convul.htm (accessed on 27 March 2019).
- Epi-Care Free. Available online: https://www.danishcare.dk/epicare-free (accessed on 27 March 2019).
- Zephyr, HealthcareMedtronic.com. Available online: https://www.zephyranywhere.com/.
- Vicon. Available online: https://www.vicon.com/.
- Timex. Available online: https://www.timex.com/.
- Polar. Available online: http://www.polar.com.
- Suunto. Available online: www.suunto.com.
- AppleNikeApps. Available online: https://www.theguardian.com/technology/2014/oct/23/nike-apple-wearable-technology (accessed on 27 March 2019).
- Sensorium. Available online: http://www.sensorium.co.uk.
- SAMi. Available online: https://www.samialert.com/.
- Nike. Available online: https://qz.com/315924/the-patented-nike-shirt-that-could-track-your-heart-rate-and-blood-pressure-while-you-exercise/ (accessed on 27 March 2019).
Seizure Type | Symptoms and Associated Biomarkers |
---|---|
Tonic | Muscles contractions (Seconds to minutes) associated with body movement and sweating. |
Epileptic spasm | Flexion, extension of proximal muscles, and sweating. Occurs in clusters. |
Dystonic | Contraction and twisting of agonist and antagonist muscles, and abnormal posture. |
Myoclonic | Sudden low amplitude contraction(s) of muscle(s) |
Negative myoclonic | Inconsistent tonic muscular activity (<500 ms) |
Clonic | High amplitude semi rhythmic muscle movements associated with sweating |
Atonic | Sudden loss of muscle tone involving head, trunk, jaw, and limbs |
Generalized tonic-clonic seizure (GCTS) | Tonic contractions along with the clonic movement of somatic muscles along with sweating |
Focal dyscognitive seizure | Disturbed cognition, perception, emotion, and executing parameters associated with body movement and sweating |
Non motor | Ictal phenomenon creating sensory seizures/functions |
Autonomic | Variation in the CNS, cardiovascular, pupillary, gastrointestinal, and thermoregulatory functions |
Technique | Sensitivity (%) | Seizure Type | Ref. |
---|---|---|---|
Intracranial EEG | 80–98.8 | Focal seizures | [54] |
Scalp EEG | 74–96.6 | Focal seizures | |
EDA | 86 | Focal dyscognitive seizures | |
ECG | 70–99.8 | Focal seizures | |
Accelerometry | 95.71 | Hypermotor seizures | |
Video detection system | 93.3–100 | Motor/Hypermotor seizures | |
EDA and ACM | 94 | Motor seizures | [55] |
sEMG and ACM | 91 | Tonic-clonic seizures | [56] |
Magnetometer and ACM | 62 | Tonic seizures | [57] |
Magnetometer and ACM | 90 | Tonic clonic | [57] |
VARIA: Video, ACM and Radar-Induced Activity recording | 56 | Generalized | [58] |
EEG and EKG | 92 | Tonic clonic | [59] |
NIRS | 94 | Hemodynamic response during seizures | [60] |
MEG MEG/EEG | 60 71 | focal or generalized epilepsy | [61] |
Sensor/Product | Provider | Description | Class | Ref. |
---|---|---|---|---|
(i) Mobile EEG and cognitive state software (ii) B-Alert wireless EEG (iii) B-Alert integration (iv) Awake/sleep EEG Analysis Capabilities | Advanced brain monitoring, Carlsbad, CA, USA | Neuro-diagnostics device to interpret brain and physiological function EEG biomarkers Brain-computer interface | Minimally Invasive/invasive/wearable/non-wearable/used for detection as well as prediction sensor | [133] |
Apple Seiz Alarm | Apple Inc., Cupertino, CA, USA | Detects motions resembling to seizure, immediate intimation, monitoring of seizure activities, GPS tracking, and event log tracking. | Non-invasive/wearable/used for detection sensor | [134] |
(i) Embrace (ii) Embrace 2 | Developed at M.I.T., MA, USA | Detection of GTCS. Convulsive seizures. Tracks the activity, stress and overall body balance, water-resistant, uses Bluetooth, low energy, and provides USB connectivity for charging | Non-invasive/wearable/used as detections and prediction sensor | [131,135] |
RNS® System | NeuroPace Inc., Mountain View, CA, USA | Responds to heart rhythms and brain activity | Non-invasive/wearable/used as detection and prediction sensor | [136] |
Brain Sentinel’s SPEAC® | Brain Sentinel, Inc., Texas, TX, USA | Sensitivity to detect Generalized Tonic Clonic Seizures. Phase III trial the fastest GTC seizure alarm on the market | Non-invasive/wearable/used as detection sensor | [137] |
(i) Ictal Care365 (ii) EDDI | Ictalcare A/S; Brain Sentinel, Inc., Texas, TX, USA | Capture immediately tonic-clonic seizures wireless epilepsy alarm | Non-invasive/wearable/used as detection sensor | [138] |
SMART: Seizure Monitoring and Response Transducer belt | Team Seize and Assist/RICE, University (RICE, University) Cyberonics Inc. (Houston, TX, USA) funded the projet | Detects increased electrical skin conductance, changes in respiration rate | Non-invasive/minimally invasive/wearable/used as prediction sensor | [139] |
Neuroon | Inteliclinic, San Francisco, CA, USA | Measures eye movements, pulse, saturation, and brain waves. | Non-invasive/non-wearable/used for prediction sensor | [140] |
(i) CentrePoint insight watch (ii) ActiGraph GT9X Link (iii) wGT3X-BT (iv) CentrPoint Data hub (v) ActiLife | ActiGraph, Pensacola, FL, USA | medical-grade wearable activity and sleep monitoring solutions based on wearable accelerometry monitors and a robust software technology | Non-invasive/non-wearable/used as detection and prediction sensor | [141] |
INOpulse® | Bellerophon Therapeutics, Warren, NJ, USA | Clinical-stage biotherapeutics in Phase 2b clinical trial for the detection of Pulmonary Hypertension | Non-invasive/non-wearable/used as prediction sensor | [142] |
Garmin® Health | Garmin International, Inc., Olathe Kansas, KS, USA | Wearable solutions for clinical trials | Non-invasive/wearable/used as prediction sensor | [143] |
Smart Shirts | Hexoskin health sensors and AI (Montreal, Canada) | Biometric shirts measuring heart rate, breathing rate, active and sleep mode. | Non-invasive/wearable/used as detection and prediction sensor | [144] |
(i) Brainpower system (ii) Mirrorable (iii) Kinect/webcam and mood detection solutions (iv) Sdks & APIs | Affectiva/MIT’s Media Lab, MA, USA | Emotion measurement technology. Facial cues or physiological responses motor skills rehab based on Mirror Neurons research | Non-invasive/non-wearable/used as detection as well as prediction sensor | [145] |
(i) Basis Peak™ Watches (ii) Basis Peak™ fitness and sleep tracker | Basis/Intel/Basis Science, Inc., San Francisco, CA, USA | Measuring heart rate, temperature, skin response, and eye movement | Non-invasive/wearable/used for prediction sensor | [146] |
(i) Vitruvius: Versatile Interface for Trustworthy Vital User (ii) Holst Centre/IMEC Hobo Heeze BV (iii) Video Observation System (VOS) (iv) Emfit: nocturnal tonic-clonic seizure monitor | The Vitruvius Project, Inc., Oregon, WA, USA | Integrated algorithms, EEG, EKG, accelerometer, low consumption of power, cardio, and video sensors | Non-invasive/non-wearable/used for prediction sensor | [147] |
Ricola | Living Well With Epilepsy: Jessica, USA | Standard sensor but connected to Smartphone EEG system. | Minimally-invasive/non-wearable/used as prediction sensor | [148] |
(i) VNS Therapy (ii) 103 emipulse1 (iii) 104 Demipulse Duo1 (iv) 105 AspireHC1 (v) 106 AspireSR | Cyberonics, Inc., USA | VNS Therapy has the ability to not only prevent seizures before they start but also stop them if they do | Invasive/wearable/used for prediction and prohibit sensor | [149] |
Vigil Aide | DCT associates Pty Ltd., Australia | Convulsion/epilepsy alarm operated by one of the telecommunication authorities. | Non-invasive/non-wearable/used as detection sensor | [150] |
Epi-Care free | Danish care, Wexford, Ireland | Tonic-clonic epileptic seizure sensor worn around the wrist like a watch. arm’s movements to the alarm itself, which constantly analyzes the movements of the muscles | Non-invasive/wearable/used as detection and prediction sensor | [151] |
(i) Zephyr™ (ii) BioModule™ Devices (iii) Zephyr™ Sports Bra (iv) Zephyr™ GPS Units BioHarness and (v) OmniSense software | Zephyr Technology Corporation/Medtronic, CA, USA | Wearable technology measuring heart rate, breathing rate, HRV, posture, and accelerometer activity, body temperature, caloric burn, blood pressure | Non-invasive/wearable/used as detection and prediction sensor | [152] |
(i) Cara 3D lite (ii) Vicon Vue (iii) Bonita (iv) Blade motion software (v) Vicon vero | VICON, California, CA, USA | A camera system, power, precise and fast 3D facial capture solution | Non-invasive/non- wearable/used as detection sensor | [153] |
(i) Timex watches (ii) IRONMAN1 Easy TrainerTM/M5 (iii) Suunto Quest, Ambit3, H1, H2, H7, FT1, FT2, Ft60, FT80, FT40, FT7 (iv) L42B-1216#3467 (v) Apple Inc. | (i) Timex (USA) (ii) Polar (USA) (iii) Suunto (Finland) (iv) APPSCOMM (Guangzhou, China C&Q Telecom Equipment Co. Ltd.) (v) FuelBand fitness-tracking bracelet/apple watches (USA) | Heart rate reading, wrist heart rate measurements, mobile compatibility, GPS, waterproof Smartwatches with calling capability Dual-core smartwatch Apple watches | Non-invasive/wearable/used as detection and prediction sensor | [154,155,156,157] |
(i) Intercall (ii) Sensalert (iii) Pressure reducing mattress: Invacare | Sensorium, UK | Systems and bed management system. Chair monitoring system | Non-invasive/non-wearable/used as detection sensor | [158] |
(i) SAMi® (ii) Sami2 (iii) Sami 3 | SAMi/HIPASS DESIGN LLC, CO, USA | Sleep activity monitor using video and audio support remote infrared video camera is sent to an app that runs on an iOS device such as an iPhone or iPod Touch | Non-invasive/non- wearable/used as detection sensor | [159] |
Tracking sports gear | Nike & Athos and OMsignal (USA) | Smart shirt design for fitness tracking by measuring heart rate, temperature, blood pressure, and hydration level | Non-invasive/wearable/used as detection and prediction sensor | [160] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, S.; Sharma, V.; Mujawar, M.; Mishra, Y.K.; Kaushik, A.; Ghosal, A. Biosensors for Epilepsy Management: State-of-Art and Future Aspects. Sensors 2019, 19, 1525. https://doi.org/10.3390/s19071525
Tiwari S, Sharma V, Mujawar M, Mishra YK, Kaushik A, Ghosal A. Biosensors for Epilepsy Management: State-of-Art and Future Aspects. Sensors. 2019; 19(7):1525. https://doi.org/10.3390/s19071525
Chicago/Turabian StyleTiwari, Shivani, Varsha Sharma, Mubarak Mujawar, Yogendra Kumar Mishra, Ajeet Kaushik, and Anujit Ghosal. 2019. "Biosensors for Epilepsy Management: State-of-Art and Future Aspects" Sensors 19, no. 7: 1525. https://doi.org/10.3390/s19071525
APA StyleTiwari, S., Sharma, V., Mujawar, M., Mishra, Y. K., Kaushik, A., & Ghosal, A. (2019). Biosensors for Epilepsy Management: State-of-Art and Future Aspects. Sensors, 19(7), 1525. https://doi.org/10.3390/s19071525