Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals
<p>(<b>a</b>) Side and (<b>b</b>) top views of the proposed triple-band antenna.</p> "> Figure 2
<p>Simulated return losses for the antenna with single and double-element square-ring slots.</p> "> Figure 3
<p>Current distributions at (<b>a</b>) 2.6 GHz, (<b>b</b>) 3.6 GHz, and (<b>c</b>) 5.25 GHz.</p> "> Figure 4
<p>Return loss results for different values of (<b>a</b>) g (square-slot width), (<b>b</b>) h (substrate thickness), (<b>c</b>) W (the size of the first square-ring resonator), and (<b>d</b>) W<sub>1</sub> (the size of the second square-ring resonator).</p> "> Figure 5
<p>3D transparent views of the radiation patterns at (<b>a</b>) 2.6 GHz, (<b>b</b>) 3.6 GHz, and (<b>c</b>) 5.25 GHz.</p> "> Figure 6
<p>Maximum gain and efficiencies of the triple-band slot antenna.</p> "> Figure 7
<p>2D-polar radiation patterns for (<b>a</b>) H-plane and (<b>b</b>) E-plane.</p> "> Figure 8
<p>Fabricated antenna, (<b>a</b>) top view and (<b>b</b>) bottom view.</p> "> Figure 9
<p>Measured and simulated return losses of the multi-band double-element slot antenna.</p> "> Figure 10
<p>(<b>a</b>) Side and (<b>b</b>) top views of the antenna.</p> "> Figure 11
<p>Simulated S-parameters (<b>a</b>) S<sub>nn</sub> (input-impedance) and (<b>b</b>) S<sub>nm</sub> (maximum mutual coupling).</p> "> Figure 12
<p>Different placement of the employed rectangular microstrip feed lines. (<b>a</b>) first, (<b>b</b>) second, and (<b>c</b>) third (the proposed).</p> "> Figure 13
<p>S<sub>nn</sub> and S<sub>nm</sub> characteristics of the antenna for different placements of the feed lines.</p> "> Figure 14
<p>3D linear-scaling radiation patterns of the different elements at 3.6 GHz.</p> "> Figure 15
<p>3D radiation patterns at (<b>a</b>) 2.6 GHz, (<b>b</b>) 3.6 GHz, and (<b>c</b>) 5.25 GHz.</p> "> Figure 16
<p>The antenna maximum gain and efficiencies.</p> "> Figure 17
<p>(<b>a</b>) Top and (<b>b</b>) bottom views of the prototype; measurements setups of (<b>c</b>) S-parameters and (<b>d</b>) radiation patterns.</p> "> Figure 18
<p>Measured (<b>a</b>) S<sub>nn</sub> and (<b>b</b>) S<sub>nm</sub> characteristics of the prototype.</p> "> Figure 19
<p>2D-polar radiation patterns in the (<b>a</b>) H-plane and (<b>b</b>) E-plane.</p> "> Figure 20
<p>Simulated (<b>a</b>) envelope correlation coefficient (ECC) and (<b>b</b>) total active reflection coefficient (TARC), and measured (<b>c</b>) ECC and (<b>d</b>) TARC results.</p> "> Figure 21
<p>Simulated specific absorption rate (SAR) at (<b>a</b>) 2.6, (<b>b</b>) 3.6, and (<b>c</b>) 5.25 GHz.</p> "> Figure 22
<p>Efficiency characteristic of the antenna elements for different modes (<b>a</b>) RHM-1, (<b>b</b>) RHM-2, (<b>c</b>) LHM-1, and (<b>d</b>) LHM-2.</p> "> Figure 23
<p>3D Radiation patterns of the antenna elements in the present of both user’s hands at (<b>a</b>) 2.6 GHz, (<b>b</b>) 3.6 GHz, and (<b>c</b>) 5.25 GHz.</p> "> Figure 24
<p>3D Radiation pattern results in Talk-Mode at (<b>a</b>) 2.6 GHz, (<b>b</b>) 3.6 GHz, and (<b>c</b>) 5.25 GHz.</p> "> Figure 25
<p>The new configuration of the proposed MIMO smartphone antenna design.</p> ">
Abstract
:1. Introduction
2. Double-Element Square-Ring Slot Antenna
3. The Proposed Multi-Band Smartphone Antenna
4. User-Effect and SAR Investigation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nadeem, Q.U.A.; Debbah, M.; Alouini, M.S. Design of 5G full dimension massive MIMO systems. IEEE Trans. Commun. 2018, 66, 726–740. [Google Scholar] [CrossRef]
- Yang, H.H.; Quel, Y.Q.S. Massive MIMO Meet Small Cell; Springer Briefs in Electrical and Computer Engineering: Fort Lee, NJ, USA, 2017. [Google Scholar]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Statement: Improving Consumer Access to Mobile Services at 3.6 GHz to 3.8 GHz. Available online: https://www.ofcom.org.uk/consultations-and-statements/category-1/future-use-at-3.6-3.8-ghz (accessed on 21 October 2018).
- Li, M.-Y.; Ban, Y.L.; Xu, Z.Q.; Wu, G.; Kang, K.; Yu, Z.F. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans. Antennas Propag. 2016, 64, 3820–3830. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Yang, G. Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones. IEEE Access. 2018, 6, 28041–28053. [Google Scholar] [CrossRef]
- Li, M.-Y. Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone. IET Microw. Antennas Propag. 2017, 11, 1810–1816. [Google Scholar] [CrossRef]
- Al-Hadi, A.A.; Ilvonen, J.; Valkonen, R.; Viikan, V. Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500MHz band. Microw. Opt. Technol. Lett. 2014, 56, 1323–1327. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Al-Yasir, Y.I.A.; Noras, J.M.; Abd-Alhameed, R.A. Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access. 2019. accepted. [Google Scholar]
- Ojaroudi Parchin, N. Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications. EuCAP Conf. 2019. accepted. [Google Scholar]
- Qin, Z.; Geyi, W.; Zhang, M.; Wang, J. Printed eight-element MIMO system for compact and thin 5G mobile handest. Electron. Lett. 2016, 52, 416–418. [Google Scholar] [CrossRef]
- Trinh, L.H.; Lizzi, L.; Staraj, R.; Ribero, J.M. Reconfigurable antenna for future spectrum reallocations in 5G communications. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1297–1300. [Google Scholar] [CrossRef]
- Ban, Y.-L.; Li, C.; Wu, G.; Wong, K.L. 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access. 2016, 4, 2981–2988. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, H.; Wang, J.; Ge, L.; Li, Y.; Pei, T. Single ring slot based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans. Antennas Propag. 2018. [Google Scholar] [CrossRef]
- Li, M.-Y. Multiple antennas for future 4G/5G smartphone applications. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, China, 20–22 July 2016. [Google Scholar]
- Yoshimura, Y. A microstripline slot antenna. IEEE Trans. Microw. Theory Tech. 1972, 11, 760–762. [Google Scholar] [CrossRef]
- Parchin, N.O. Frequency reconfigurable antenna array for MM-Wave 5G mobile handsets. In Proceedings of the 9th International Conference on Broadband Communications, Networks, and Systems, Faro, Portugal, 19–20 September 2018. [Google Scholar]
- Ojaroudi, N.; Ghadimi, N. Design of CPW-fed slot antenna for MIMO system applications. Microw. Opt. Tech. Lett. 2014, 56, 1278–1281. [Google Scholar] [CrossRef]
- Parchin, N.O.; Shen, M.; Pedersen, G.F. Small-size tapered slot antenna (TSA) design for use in 5G phased array applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 193–202. [Google Scholar]
- Pal, A.; Behera, S.; Vinoy, K.J. Design of multi-frequency microstrip antennas using multiple rings. IET Microw. Antennas Propag. 2009, 3, 77–84. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, H. A novel concentric annular-ring slot dual-band circularly polarized microstrip antenna. Int. J. Antennas Propag. 2018, 1–8. [Google Scholar] [CrossRef]
- Choi, J.H.; Sun, J.S.; Itoh, T. Frequency-scanning phased-array feed network based on composite right/left-handed transmission lines. IEEE Trans. Microw. Theory Tech. 2013, 61, 3148–3157. [Google Scholar] [CrossRef]
- Sharawi, M.S. Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas Propag. Mag. 2013, 55, 218–232. [Google Scholar] [CrossRef]
- Ojaroudiparchin, N.; Shen, M.; Zhang, S.; Pedersen, G.F. A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1747–1750. [Google Scholar] [CrossRef]
- Fallah, M.; Heydari, A.A.; Mallahzadeh, A.R.; Kashani, F.H. Design and SAR reduction of the vest antenna using metamaterial for broadband applications. Appl. Comput. Electromagn. Soc. J. 2011, 26, 141–155. [Google Scholar]
- Moustafa, J.; McEwan, N.J.; Abd-Alhameed, R.A.; Excell, P.S. Low SAR phased antenna array for mobile handsets. Appl. Comput. Electromagn. Soc. J. 2006, 21, 196–205. [Google Scholar]
Parameter | Value (mm) | Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|---|---|
WSub | 75 | Lsub | 150 | d | 6 |
WS | 15 | Lf | 11.85 | Wf | 3 |
g | 0.5 | W | 17.8 | W1 | 14 |
W2 | 18 | W3 | 12.6 | Lf2 | 11.4 |
Reference | Bandwidth (GHz) | Efficiency (%) | Overall Size (mm2) | Isolation (dB) | ECC |
---|---|---|---|---|---|
[5] | 2.55–2.68 | 48–63 | 136 × 68 | 12 | >0.15 |
[6] | 3.4–2.3.8 5.15–5.92 | 41–84 47–79 | 150 × 80 | 12 | >0.15 |
[7] | 2.55–2.6 | 48–63 | 136 × 68 | 11 | >0.15 |
[8] | 3.4–3.6 | 62–78 | 140 × 70 | 10 | >0.20 |
[9] | 3.4–3.8 | 55–70 | 150 × 75 | 15 | <0.05 |
[10] | 3.55–3.65 | 52–76 | 150 × 75 | 11 | — |
[11] | 1.88–1.92 2.30–2.62 | 39–55 50–70 | 138 × 68.8 | 10 | <0.15 |
[12] | 0.63–0.96 1.70–2.70 3.50–3.80 | 40–60 50–75 60–75 | 130 × 70 | — | — |
[13] | 0.82–0.96 1.8–2.6 3.4–3.6 | 30–45 30–80 50–70 | 140 × 70 | 10 | <0.4 |
[14] | 0.84–0.96 1.72–2.65 3.40–3.60 | 10–50 10–80 20–90 | 150 × 74 | 13 | <0.05 |
[15] | 0.63–0.96 1.70–2.70 3.50–3.80 | 35–48 10–75 55–87 | 40 × 65 | 10 | <0.35 |
Proposed | 2.5–2.7 3.45–3.8 5–5.45 | 64–75 73–76 69–75 | 150 × 75 | 17 | <0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Al-Yasir, Y.I.A.; Ullah, A.; Abd-Alhameed, R.A.; Noras, J.M. Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals. Sensors 2019, 19, 456. https://doi.org/10.3390/s19030456
Ojaroudi Parchin N, Jahanbakhsh Basherlou H, Al-Yasir YIA, Ullah A, Abd-Alhameed RA, Noras JM. Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals. Sensors. 2019; 19(3):456. https://doi.org/10.3390/s19030456
Chicago/Turabian StyleOjaroudi Parchin, Naser, Haleh Jahanbakhsh Basherlou, Yasir I. A. Al-Yasir, Atta Ullah, Raed A. Abd-Alhameed, and James M. Noras. 2019. "Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals" Sensors 19, no. 3: 456. https://doi.org/10.3390/s19030456
APA StyleOjaroudi Parchin, N., Jahanbakhsh Basherlou, H., Al-Yasir, Y. I. A., Ullah, A., Abd-Alhameed, R. A., & Noras, J. M. (2019). Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals. Sensors, 19(3), 456. https://doi.org/10.3390/s19030456