Riemannian Spatio-Temporal Features of Locomotion for Individual Recognition
<p>Illustration of the proposed (<b>a</b>) aligned Riemannian mean motion sequence (ARMMS). (<b>b</b>) A and B are the pair of poses in two different sequences <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>. C and D are the mean points on the sphere and plane, respectively. F and E are mirrors of A for manifold and Euclidean cases, respectively. The difference between A and B in the green on the sphere is larger than in the case on the Euclidean plane, i.e., geodesic <math display="inline"><semantics> <mrow> <mover> <mrow> <mi>B</mi> <mi>F</mi> </mrow> <mo stretchy="false">⌢</mo> </mover> <mo>></mo> <mi>B</mi> <mi>E</mi> </mrow> </semantics></math>.</p> "> Figure 2
<p>Overview of the proposed framework.</p> "> Figure 3
<p>Temporal construction of the covariance descriptor.</p> "> Figure 4
<p>Skeletal structures: <b>left</b>: the CMU Mocap database, <b>middle</b>: the UPCVgait database, and <b>right</b>: our database.</p> "> Figure 5
<p>Motion cycle extraction by autocorrelation function.</p> "> Figure 6
<p>Overview of the capture system and the captured images. The top is the testing field of our database, and the bottom is one frame in a single gait sequence of our database, which is captured from the prescribed walking direction.</p> "> Figure 7
<p>Example frames of Subject 6 in our database.</p> "> Figure 8
<p>The recognition rate for three proposed features with different feature dimensions: the kernelized Riemannian geometric feature (KRGF), the kernelized Riemannian temporal hierarchy of covariance (KRTHC) feature, and their fusion (KRGF + KRTHC) on the walking sequence in our database.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Our Method
3.1. Preliminary
3.2. Riemannian Geometric Features Representation
Algorithm 1 Computing mean sequence. |
Input: a set of sequences , and |
Initialization:, and |
for to F do |
for to J do |
while do |
Compute , for |
Compute mean tangent vector |
Update : |
end while |
Return: mean joint |
end for |
Return: mean pose |
end for |
Return: mean sequence |
3.3. Riemannian Temporal Hierarchy of Covariance Descriptors
3.4. Kernel Metric Learning
4. Experiments
4.1. Database
4.2. Evaluation with Known 3D Poses
4.3. Evaluation with Unknown Poses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mason, J.E.; Traoré, I.; Woungang, I. Machine Learning Techniques for Gait Biometric Recognition: Using the Ground Reaction Force; Springer: Berlin, Germany, 2016. [Google Scholar]
- Kale, A.; Sundaresan, A.; Rajagopalan, A.N.; Cuntoor, N.P.; Roy-Chowdhury, A.K.; Kruger, V.; Chellappa, R. Identification of humans using gait. IEEE Trans. Image Process. 2004, 13, 1163–1173. [Google Scholar] [CrossRef]
- Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 1973, 14, 201–211. [Google Scholar] [CrossRef]
- Dittrich, W.H. Action categories and the perception of biological motion. Perception 1993, 22, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bingham, G.P.; Schmidt, R.C.; Rosenblum, L.D. Dynamics and the orientation of kinematic forms in visual event recognition. J. Exp. Psychol. Hum. Percept. Perform. 1995, 21, 1473. [Google Scholar] [CrossRef] [PubMed]
- Cutting, J.E.; Kozlowski, L.T. Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychon. Soc. 1977, 9, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Stevenage, S.V.; Nixon, M.S.; Vince, K. Visual analysis of gait as a cue to identity. Appl. Cognit. Psychol. 1999, 13, 513–526. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Y.; Wang, L.; Wang, X.; Tan, T. A comprehensive study on cross-view gait based human identification with deep cnns. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Leonardos, S.; Zhou, X.; Daniilidis, K. Articulated motion estimation from a monocular image sequence using spherical tangent bundles. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 587–593. [Google Scholar]
- Cheng, M.H.; Ho, M.F.; Huang, C.L. Gait analysis for human identification through manifold learning and HMM. Pattern Recognit. 2008, 41, 2541–2553. [Google Scholar] [CrossRef]
- Han, J.; Bhanu, B. Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 316. [Google Scholar] [CrossRef]
- Rougier, C.; Auvinet, E.; Meunier, J.; Mignotte, M.; De Guise, J.A. Depth energy image for gait symmetry quantification. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, Boston, MA, USA, 30 August–3 September 2011; pp. 5136–5139. [Google Scholar]
- Wang, C.; Zhang, J.; Pu, J.; Yuan, X.; Wang, L. Chrono-Gait Image: A Novel Temporal Template for Gait Recognition. In Proceedings of the European Conference on Computer Vision, Heraklion, Crete, Greece, 5–11 September 2010; pp. 257–270. [Google Scholar]
- Lam, T.H.W.; Cheung, K.H.; Liu, J.N.K. Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognit. 2011, 44, 973–987. [Google Scholar] [CrossRef]
- Sivapalan, S.; Chen, D.; Denman, S.; Sridharan, S.; Fookes, C. Gait energy volumes and frontal gait recognition using depth images. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–6. [Google Scholar]
- Iwama, H.; Okumura, M.; Makihara, Y.; Yagi, Y. The OU-ISIR Gait Database Comprising the Large Population Dataset and Performance Evaluation of Gait Recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Kale, A.; Chowdhury, A.K.R.; Chellappa, R. Towards a View Invariant Gait Recognition Algorithm. In Proceedings of the Advanced Video and Signal Based Surveillance, Miami, FL, USA, 22 July 2003; pp. 143–150. [Google Scholar]
- Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Gait Recognition Under Various Viewing Angles Based on Correlated Motion Regression. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 966–980. [Google Scholar] [CrossRef]
- Kusakunniran, W.; Wu, Q.; Zhang, J.; Li, H. Support vector regression for multi-view gait recognition based on local motion feature selection. In Proceedings of the Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 974–981. [Google Scholar]
- Jean, F.; Bergevin, R.; Albu, A.B. Computing and evaluating view-normalized body part trajectories. Image Vis. Comput. 2009, 27, 1272–1284. [Google Scholar] [CrossRef]
- Ariyanto, G.; Nixon, M.S. Model-based 3D gait biometrics. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011; pp. 1–7. [Google Scholar]
- Bodor, R.; Drenner, A.; Fehr, D.; Masoud, O.; Papanikolopoulos, N. View-independent human motion classification using image-based reconstruction. Image Vis. Comput. 2009, 27, 1194–1206. [Google Scholar] [CrossRef]
- Iwashita, Y.; Ogawara, K.; Kurazume, R. Identification of people walking along curved trajectories. Pattern Recognit. Lett. 2014, 48, 60–69. [Google Scholar] [CrossRef]
- Jean, F.; Albu, A.B.; Bergevin, R. Towards view-invariant gait modeling: Computing view-normalized body part trajectories. Pattern Recognit. 2009, 42, 2936–2949. [Google Scholar] [CrossRef] [Green Version]
- Goffredo, M.; Bouchrika, I.; Carter, J.N.; Nixon, M.S. Self-calibrating view-invariant gait biometrics. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2010, 40, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Tome, D.; Russell, C.; Agapito, L. Lifting from the deep: Convolutional 3d pose estimation from a single image. arXiv, 2017; arXiv:1701.00295. [Google Scholar]
- Mehta, D.; Sridhar, S.; Sotnychenko, O.; Rhodin, H.; Shafiei, M.; Seidel, H.P.; Xu, W.; Casas, D.; Theobalt, C. VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera. arXiv, 2017; arXiv:1705.01583. [Google Scholar]
- Tekin, B.; Marquez Neila, P.; Salzmann, M.; Fua, P. Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. number EPFL-CONF-230311. [Google Scholar]
- Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1325–1339. [Google Scholar] [CrossRef]
- Schuldt, C.; Laptev, I.; Caputo, B. Recognizing Human Actions: A Local SVM Approach. In Proceedings of the International Conference on Pattern Recognition, Washington, DC, USA, 27 June 2004; Volume 3, pp. 32–36. [Google Scholar]
- Sedmidubsky, J.; Valcik, J.; Balazia, M.; Zezula, P. Gait recognition based on normalized walk cycles. In Proceedings of the 8th International Symposium on Visual Computing (ISVC 2012), Crete, Greece, 16–18 July 2012; pp. 11–20. [Google Scholar]
- Balazia, M.; Plataniotis, K. Human Gait Recognition from Motion Capture Data in Signature Poses. IET Biometr. 2016, 6, 129–137. [Google Scholar] [CrossRef]
- Yam, C.Y.; Nixon, M.; Carter, J. Extended model-based automatic gait recognition of walking and running. In Audio-and Video-Based Biometric Person Authentication; Springer: Berlin, Germany, 2001; pp. 278–283. [Google Scholar]
- Simo-Serra, E.; Torras, C.; Moreno-Noguer, F. 3D human pose tracking priors using geodesic mixture models. Int. J. Comput. Vision 2017, 122, 388–408. [Google Scholar] [CrossRef]
- Ribeiro, P.C.; Santos-Victor, J. Human Activity Recognition from Video: modeling, feature selection and classification architecture. In Proceedings of the International Workshop on Human Activity Recognition and Modeling (HAREM), Oxford, UK, 9 September 2005. [Google Scholar]
- Moenilssen, R.; Helbostad, J.L. Estimation of gait cycle characteristics by trunk accelerometry. J. Biomech. 2004, 37, 121–126. [Google Scholar] [CrossRef]
- Zhou, F.; De la Torre, F. Generalized time warping for multi-modal alignment of human motion. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 1282–1289. [Google Scholar]
- Yamane, K. Simulating and Generating Motions of Human Figures; Springer Publishing Company, Incorporated: Berlin, Germany, 2010; pp. 1–11. [Google Scholar]
- Rhodes, G.; Carey, S.; Byatt, G.; Proffitt, F. Coding spatial variations in faces and simple shapes: A test of two models. Vis. Res. 1998, 38, 2307–2321. [Google Scholar] [CrossRef]
- Karcher, H. Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 1977, 30, 509–541. [Google Scholar] [CrossRef]
- Turaga, P.; Chellappa, R. Nearest-neighbor search algorithms on non-Euclidean manifolds for computer vision applications. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, Hennai, India, 12–15 December 2010; pp. 282–289. [Google Scholar]
- Guo, K.; Ishwar, P.; Konrad, J. Action Recognition From Video Using Feature Covariance Matrices. IEEE Trans. Image Process. 2013, 22, 2479–2494. [Google Scholar] [PubMed]
- Harandi, M.T.; Sanderson, C.; Wiliem, A.; Lovell, B.C. Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures. In Proceedings of the Applications of Computer Vision, Breckenridge, CO, USA, 9–11 January 2012; pp. 433–439. [Google Scholar]
- Jayasumana, S.; Hartley, R.; Salzmann, M.; Li, H.; Harandi, M. Optimizing over Radial Kernels on Compact Manifolds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 7 June 2014; pp. 3802–3809. [Google Scholar]
- Vemulapalli, R.; Pillai, J.K.; Chellappa, R. Kernel learning for extrinsic classification of manifold features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1782–1789. [Google Scholar]
- Hussein, M.E.; Torki, M.; Gowayyed, M.A.; El-Saban, M. Human Action Recognition Using a Temporal Hierarchy of Covariance Descriptors on 3D Joint Locations. IJCAI 2013, 13, 2466–2472. [Google Scholar]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244. [Google Scholar]
- Torresani, L.; Lee, K.C. Large margin component analysis. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 1385–1392. [Google Scholar]
- Yang, L.; Cheng, J.; Liu, H. Person Re-Identification Based on Kernel Large Margin Nearest Neighbor Classification. In International Conference in Communications, Signal Processing, and Systems; Springer: Berlin, Germany, 2016; pp. 783–791. [Google Scholar]
- Balakrishnama, S.; Ganapathiraju, A. Linear Discriminant Analysis A Brief Tutorial. Proc. Int. Jt. Conf. Neural Netw. 1998, 3, 387–391. [Google Scholar]
- CMU. Carnegie Mellon University Motion Capture Database. 2014. Available online: http://mocap.cs.cmu.edu (accessed on 1 September 2018).
- Kastaniotis, D.; Theodorakopoulos, I.; Theoharatos, C.; Economou, G.; Fotopoulos, S. A framework for gait-based recognition using Kinect. Pattern Recognit. Lett. 2015, 68, 327–335. [Google Scholar] [CrossRef]
- Ball, A.; Rye, D.; Ramos, F.; Velonaki, M. Unsupervised clustering of people from ’skeleton’ data. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, Boston, MA, USA, 5–8 March 2012; pp. 225–226. [Google Scholar]
- Ahmed, M.; Al-Jawad, N.; Sabir, A.T. Gait recognition based on Kinect sensor. Real-Time Image Video Process. 2014, 9139, 91390B. [Google Scholar]
- Andersson, V.; Dutra, R.; Araújo, R. Anthropometric and human gait identification using skeleton data from Kinect sensor. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March 2014; pp. 60–61. [Google Scholar]
- Jiang, S.; Wang, Y.; Zhang, Y.; Sun, J. Real time gait recognition system based on kinect skeleton feature. In Asian Conference on Computer Vision; Springer: Berlin, Germany, 2014; pp. 46–57. [Google Scholar]
- Preis, J.; Kessel, M.; Werner, M.; Linnhoff-Popien, C. Gait recognition with kinect. In Proceedings of the 1st International Workshop on Kinect in Pervasive Computing, New Castle, UK, 8–22 June 2012; pp. P1–P4. [Google Scholar]
- Sinha, A.; Chakravarty, K.; Bhowmick, B. Person identification using skeleton information from kinect. In Proceedings of the Computer-Human Interactions, Cape Town, South Africa, 2–6 September 2013; pp. 101–108. [Google Scholar]
- Kumar, M.; Babu, R.V. Human gait recognition using depth camera: a covariance based approach. In Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, Mumbai (Bombay), India, 16–19 December 2012; p. 20. [Google Scholar]
- Theodorakopoulos, I.; Kastaniotis, D.; Economou, G.; Fotopoulos, S. Pose-based human action recognition via sparse representation in dissimilarity space. J. Vis. Commun. Image Represent. 2014, 25, 12–23. [Google Scholar] [CrossRef]
- Kastaniotis, D.; Theodorakopoulos, I.; Economou, G.; Fotopoulos, S. Gait based recognition via fusing information from Euclidean and Riemannian manifolds. Pattern Recognit. Lett. 2016, 84, 245–251. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, Q.; Sun, X.; Xue, X.; Wei, Y. Weakly-supervised Transfer for 3D Human Pose Estimation in the Wild. arXiv, 2016; arXiv:1704.02447. [Google Scholar]
Methods | Ball et al. [53] | Ahmed et al. [54] | Andersson et al. [55] | Jiang et al. [56] |
Accuracy | 46.10% | 91.20% | 92.60% | 88.80% |
Methods | Preis et al. [57] | Sedmidubsky et al. [31] | Sinha et al. [58] | Ours |
Accuracy | 56.00% | 81.60% | 96.20% | 98.70% |
Methods | Ball et al. [53] | Preis et al. [57] | Kumar and Babu [59] |
Accuracy | 14.10% | 43.00% | 89.20% |
Methods | Theodorakopoulos et al. [60] | Kastaniotis et al. [61] | Ours |
Accuracy | 94.80% | 96.20% | 97.90% |
Feature Dimension | p = 100 | p = 100 | p = 120 | p = 130 | p = 140 | p = 150 | p = 160 |
---|---|---|---|---|---|---|---|
Walking | 87.1% | 90.2% | 92.0% | 93.4% | 96.5% | 98.3% | 99.7% |
Load | 82.1% | 84.3% | 88.8% | 91.3% | 93.1% | 96.1% | 96.2% |
Leather | 85.2% | 87.5% | 90.7% | 93.2% | 95.0% | 97.6% | 98.2% |
Slippers | 84.5% | 86.8% | 87.3% | 91.5% | 93.2% | 96.9% | 97.3% |
Running | 82.5% | 85.6% | 88.9% | 92.2% | 95.5% | 96.4% | 96.8% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Feng, Z.; Su, Y.; Xing, M.; Xue, W. Riemannian Spatio-Temporal Features of Locomotion for Individual Recognition. Sensors 2019, 19, 56. https://doi.org/10.3390/s19010056
Zhang J, Feng Z, Su Y, Xing M, Xue W. Riemannian Spatio-Temporal Features of Locomotion for Individual Recognition. Sensors. 2019; 19(1):56. https://doi.org/10.3390/s19010056
Chicago/Turabian StyleZhang, Jianhai, Zhiyong Feng, Yong Su, Meng Xing, and Wanli Xue. 2019. "Riemannian Spatio-Temporal Features of Locomotion for Individual Recognition" Sensors 19, no. 1: 56. https://doi.org/10.3390/s19010056