A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes
<p>Three flexible Pt microelectrodes with circular contacts, designed and fabricated at Fraunhofer IBMT: (<b>A</b>) planar Pt electrode with 5 contacts, (<b>B</b>) cuff Pt electrode with 12 contacts, (<b>C</b>) cuff microporous Pt electrode with 12 contacts.</p> "> Figure 2
<p>VT measurements—Simplified diagram of measurement setup: WE is the working electrode, RE is the reference electrode, CE is the counter electrode. Custom circuit board and oscilloscope to capture signals. Stimulator (EasyStim) and computer for signal processing.</p> "> Figure 3
<p>(<b>a</b>) Custom circuit board for VT measurements. (<b>b</b>) Configuration of timer ICM7555 IPA (Intersil, Milpitas, CA, USA).</p> "> Figure 4
<p>VT curve of electrode excited by a symmetric, biphasic current pulse. Pulse width is 200 µs and frequency is 50 Hz.</p> "> Figure 5
<p>Time derivation of Pt electrode potential transients for 200 µs stimulation signal.</p> "> Figure 6
<p>Different access voltages (<span class="html-italic">V</span><sub><span class="html-italic">a</span>1</sub> and <span class="html-italic">V</span><sub><span class="html-italic">a</span>3</sub>) in the potential transient.</p> "> Figure 7
<p>Graphical correction of the access voltage. Black line is original potential transient, and red line is corrected potential transient.</p> "> Figure 8
<p>The voltage transient is divided into seven parts to graphically correct the access voltage.</p> "> Figure 9
<p>Determination of CIC for electrode A by calculating intersections of functions <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>m</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mrow> <mi>m</mi> <mi>c</mi> </mrow> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> with their relevant electrochemical potential window limits <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mi>a</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>c</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 10
<p>Comparison of results of cyclic voltammetry for Pt microelectrodes A and B (see <a href="#sensors-18-04152-t001" class="html-table">Table 1</a>). Scan rate was 100 mV/s.</p> "> Figure 11
<p>Potential transients of electrode B obtained by applying charge-balanced biphasic symmetric pulses with different current amplitudes and 200 µs pulse width.</p> "> Figure 12
<p>Potential transients of electrode B after the access voltage is subtracted. (<b>a</b>) Access voltage calculated by using conventional method (method 1). (<b>b</b>) Access voltage calculated by using proposed method (method 2).</p> "> Figure 13
<p>Extreme polarization values for electrode B calculated by method 1 (blue line) and method 2 (red line) as a function of injected charge.</p> "> Figure 14
<p>Access voltage as a function of current amplitude of excitation signal.</p> "> Figure 15
<p>Maximum reversible charge injection capacity of electrode B obtained with <span class="html-italic">N</span> = 10 consecutive measurements.</p> "> Figure 16
<p>Increase in CSC<sub>c</sub> due to increase in surface roughness.</p> "> Figure 17
<p>Increase in CIC due to higher surface roughness for a pulse width of 200 µs.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- : Potential at the WE at the pulse onset.
- (ii)
- : Polarization across the electrode/electrolyte interface. It is defined as the sum of the activation overpotential , and the potential due to the electrode being taken out of its equilibrium position :
- (iii)
- : Access voltage, defined as the instantaneous change in potential at the beginning of a pulse or immediately after the pulse. It is calculated as the sum of the voltages that do not influence the electrode polarization (i.e., the concentration overpotential and voltage drop across the electrolyte resistance ). Specifically:
- (iv)
- : Voltage transient, which depends on the voltage drop due to the electrolyte resistance, the concentration overpotential , the activation overpotential , and the potential due to the electrode being taken out of its equilibrium position :
2.1. Conventional and Proposed Methods to Calculate the Access Voltage
2.2. Graphical Correction of the Access Voltage
- (1)
- The first point of the sample ( may not belong to part 1 due to the instability of the waveform and it indeed is.
- (2)
- Some points do not meet the necessary conditions to belong to any part. After the correction, these points are equal to zero. For this reason, an intermediate function must be used to calculate the corrected potential.
2.3. Calculation of the Maximum and Minimum Polarization Potentials
2.4. Calculation of the Maximum Reversible Charge Injection Capacity
3. Results and Discussion
3.1. Calculation of the Maximum Reversible Charge Injection Capacity
3.2. Comparison of Access Voltage Calculation
3.3. Reproducibility
4. Conclusions
- (i)
- The access voltage can be calculated without previous knowledge of the electrolyte (or excitable tissue) resistance, which constitutes an important improvement for in vivo experimentation, where tissue resistivity is not known with precision and varies after electrode implantation.
- (ii)
- It can be applied to large, porous, or coated electrodes, for which Equation (6) for calculating the electrolyte resistance is not valid.
- (iii)
- It does not neglect the overpotential terms, which gives a more precise result for the access voltage.
- (iv)
- No interpulse period needs to be introduced between the cathodic and anodic phase of the biphasic pulse.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jalili, R.; Kanneganti, A.; Romero-Ortega, M.I.; Wallace, G.G. Implantable electrodes. Curr. Opin. Electrochem. 2017, 3, 68–74. [Google Scholar] [CrossRef]
- Normann, R.A. Technology insight: Future neuroprosthetic therapies for disorders of the nervous system. Nat. Rev. Neurol. 2007, 3, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Avendaño Coy, J.; Basco López, J.A. Functional electrostimulation in patients with spinal cord injury (scientific review). Fisioterapia 2001, 23, 12–22. [Google Scholar] [CrossRef]
- Sivaramakrishnan, A.; Solomon, J.M.; Manikandan, N. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury—A pilot randomized cross-over trial. J. Spinal Cord. Med. 2018, 41, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Hambrecht, F.T. Visual prostheses based on direct interfaces with the visual system. Baillieres Clin. Neurol. 1995, 4, 147–165. [Google Scholar] [PubMed]
- Rizzo, J.F.; Wyatt, J.; Loewenstein, J.; Kelly, S.; Shire, D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5362–5369. [Google Scholar] [CrossRef]
- Klinke, R.; Kral, A.; Heid, S.; Tillein, J.; Hartmann, R. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 1999, 285, 1729–1733. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.M. The multiple-channel cochlear implant: Interface between the sound and the central nervous system for hearing, speech, and language in deaf people—A personal perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 791–810. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.D.; Hudak, E.M.; Whalen, J.J.; Petrossians, A.; Weiland, J.D. Low-Impedance, High Surface Area Pt-Ir Electrodeposited on Cochlear Implant Electrodes. J. Electrochem. Soc. 2018, 165, G3015–G3017. [Google Scholar] [CrossRef]
- Müller, E.J.; Robinson, P.A. Quantitative theory of deep brain stimulation of the subthalamic nucleus for the suppression of pathological rhythms in Parkinson’s disease. PLOS Comput. Biol. 2018, 14, e1006217. [Google Scholar] [CrossRef] [PubMed]
- Perlmutter, J.S.; Mink, J.W. Deep brain stimulation. Annu. Rev. Neurosci. 2006, 29, 229–257. [Google Scholar] [CrossRef] [PubMed]
- Lipsman, N.; Lozano, A.M. Deep Brain Stimulation for Psychiatric Disorders. In Deep Brain Stimulation for Neurological Disorders; Itakura, T., Ed.; Springer: Cham, Switzerland, 2015; pp. 169–181. ISBN 978-3-319-08475-6. [Google Scholar]
- Peckham, P.H. Functional electrical stimulation: Current status and future prospects of applications to the neuromuscular system in spinal cord injury. Paraplegia 1987, 25, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Cogan, S.F.; Ludwig, K.A.; Welle, C.G.; Takmakov, P. Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 2016, 13, 021001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogan, S.F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309. [Google Scholar] [CrossRef] [PubMed]
- Piñuela-Martin, E.; del-Ama, A.J.; Fraile-Marinero, J.C.; Gil-Agudo, A. Neuromuscular electrical stimulation modelling by physiological and black-box approach. Rev. Iberoam. Autom. Inform. Ind. 2016, 13, 330–337. [Google Scholar] [CrossRef]
- Merrill, D.R.; Bikson, M.; Jefferys, J.G. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Brummer, S.B.; Turner, M.J. Electrochemical considerations for safe electrical stimulation of nervous system with platinum electrodes. IEEE Trans. Biomed. Eng. 1977, 1, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Jensen, R.J.; Rizzo, J.F., III. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp. Eye Res. 2006, 83, 367–373. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.C.; Grill, W.M. Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 2002, 88, 1592–1604. [Google Scholar] [CrossRef] [PubMed]
- Ghazavi, A.; Cogan, S.F. Electrochemical characterization of high frequency stimulation electrodes: Role of electrode material and stimulation parameters on electrode polarization. J. Neural. Eng. 2018, 15, 036023. [Google Scholar] [CrossRef] [PubMed]
- Rozman, J.; Pečlin, P.; Mehle, A.; Šala, M. Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff. Australas. Phys. Eng. Sci. Med. 2014, 37, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Brownson, D.A.; Banks, C.E. Interpreting Electrochemistry in The Handbook of Graphene Electrochemistry; Springer: London, UK, 2014; pp. 23–77. ISBN 978-1-4471-6428-9. [Google Scholar]
- Gong, C.S.A.; Syu, W.J.; Lei, K.F.; Hwang, Y.S. Development of a flexible non-metal electrode for cell stimulation and recording. Sensors 2016, 16, 1613. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; ISBN 978-0-471-04372-0. [Google Scholar]
- Cantrell, D.R.; Inayat, S.; Taflove, A.; Ruoff, R.S.; Troy, J.B. Incorporation of the electrode-electrolyte interface into finite element models of metal microelectrodes. J. Neural Eng. 2007, 5, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Gowrishankar, T.R.; Weaver, J.C. An approach to electrical modeling of single and multiple cells. Proc. Natl. Acad. Sci. USA 2003, 6, 3203–3208. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G. Introduction to the theory, design, and modeling of thin-film microelectrodes for neural interfaces. In Enabling Technologies for Cultured Neuronal Networks; Stenger, D.A., McKenna, T.M., Eds.; Academic Press: London, UK, 1994; pp. 121–165. ISBN 0126659702. [Google Scholar]
- Grill, W.M. Modeling the effects of electric field on nerve fibers: Influence of tissue electrical properties. IEEE Trans. Biomed. Eng. 1999, 46, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Russold, M.; Dietl, H.; Ruff, R.; Audi, J.M.C.; Hoffmann, K.P.; Gail, A. Fully implantable multi-channel measurement system for acquisition of muscle activity. IEEE Instrum. Meas. 2013, 62, 1972–1981. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Ceballos, D.; Schu, M.; Valero, A.; Valderrama, E.; Stieglitz, T.; Navarro, X. Polyimide cuff electrodes for peripheral nerve stimulation. J. Neurosci. Methods 2000, 98, 105–118. [Google Scholar] [CrossRef]
- Grill, W.M.; Mortimer, J.T. Electrical Properties of Implant Encapsulation Tissue. Ann. Biomed. Eng. 1994, 22, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Leung, R.T.; Shivdasani, M.N.; Nayagam, D.A.; Shepherd, R.K. In vivo and in vitro comparison of the charge injection capacity of platinum macroelectrodes. IEEE Trans. Biomed. Eng. 2015, 62, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Poppendieck, W.; Koch, K.; Steltenkamp, S.; Hoffmann, K.P. A measurement set-up to determine the charge injection capacity for neural microelectrodes. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Munich, Germany, 7–12 September 2009; pp. 162–165. [Google Scholar]
- Rose, T.L.; Robblee, L.S. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans. Biomed. Eng. 1990, 37, 1118–1120. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.; Bhandari, R.; Solzbacher, F. Morphology and electrochemical properties of activated and sputtered iridium oxide films for functional electrostimulation. J. Sens. Technol. 2012, 2, 138–147. [Google Scholar] [CrossRef]
- Cogan, S.F.; Ehrlich, J.; Plante, T.D.; Smirnov, A.; Shire, D.B.; Gingerich, M.; Rizzo, J.F. Sputtered iridium oxide films for neural stimulation electrodes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lyu, H.; Richardson, A.G.; Lucas, T.H.; Kuzum, D. Flexible, Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing. Sci. Rep. 2016, 6, 33526. [Google Scholar] [CrossRef] [PubMed]
- Cogan, S.F.; Guzelian, A.A.; Agnew, W.F.; Yuen, T.G.; McCreery, D.B. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J. Neurosci. Methods 2004, 137, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Franks, W.; Schenker, I.; Schmutz, P.; Hierlemann, A. Characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng. 2005, 52, 1295–1302. [Google Scholar]
- Cogan, S.F.; Troyk, P.R.; Ehrlich, J.; Gasbarro, C.M.; Plante, T.D. The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes. J. Neural Eng. 2007, 4, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Norlin, A.; Pan, J.; Leygraf, C. Investigation of electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications. I. Pt, Ti, and TiN coated electrodes. J. Electrochem. Soc. 2005, 152, J7–J15. [Google Scholar] [CrossRef]
- Mohtashami, S. Electrochemical Properties of Flexible Electrodes for Implanted Neuromuscular Excitation Application. Master’s Thesis, McMaster University, Hamilton, ON, Canada, 2011. Unpublished. [Google Scholar]
- Jin, Y.H.; Daubinger, P.; Fiebich, B.L.; Stieglitz, T. A novel platinum nanowire-coated neural electrode and its electrochemical and biological characterization. In Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 23–27 January 2011; pp. 1003–1006. [Google Scholar]
- Green, R.A.; Toor, H.; Dodds, C.; Lovell, N.H. Variation in performance of platinum electrodes with size and surface roughness. Sens. Mater. 2012, 24, 165–180. [Google Scholar]
Microelectrode | Type | Material | GSA (cm2) |
---|---|---|---|
A | Planar | Sputtered Pt | 0.001963 |
B | Cuff | Sputtered Pt | 0.0013 |
C | Cuff | Microporous Pt | 0.0013 |
Current (mA) | VRs/Va1 | VRs/Va3 |
---|---|---|
0.09955 | 1.00 | 0.99 |
0.19942 | 1.00 | 1.00 |
0.30267 | 0.95 | 1.00 |
0.41316 | 0.95 | 0.98 |
0.51667 | 0.95 | 0.95 |
0.75474 | 0.96 | 0.98 |
0.99733 | 0.95 | 0.95 |
1.24186 | 0.96 | 0.96 |
1.50906 | 0.95 | 0.99 |
Test | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Method 1: CICM1 | 63.79 | 64.46 | 65.37 | 66.09 | 66.77 | 67.83 | 69.38 | 69.8 | 70.94 | 71.66 |
Method 2: CICM2 | 68.81 | 68.87 | 70.33 | 70.79 | 70.83 | 71.45 | 73.16 | 71.96 | 73.29 | 72.47 |
Electrode | Type | Material | GSA (cm2) | CICM2 (µC/cm2) | CSCc (mC/cm2) |
---|---|---|---|---|---|
A | Planar | Sputtered Pt | 0.001963 | 26.06 | 6.26 |
B | Cuff | Sputtered Pt | 0.0013 | 81.63 | 3.70 |
C | Cuff | Microporous Pt | 0.0013 | 295.90 | 37.67 |
Reference | Material | GSA (cm2) | CIC (µC/cm2) | CSCc (mC/cm2) |
---|---|---|---|---|
[35] | Sputtered Pt | 0.0095–0.00013 | 50–150 | - |
[34] | Sputtered Pt | 0.0007 | 64 | - |
[34] | Microporous Pt | 0.0007 | 524 | - |
[33] | Sputtered Pt | 0.002–0.0023 | 34–54 | - |
[43] | Sputtered Pt | - | 2.92–26.6 | |
[22] | Sputtered Pt | 0.0010 | 75 | 4 |
[45] | Bare Pt | 0.1052 | - | 0.9 |
[45] | Coated Pt | 0.1052 | - | 1.34 |
[45] | Sputtered Pt | 0.0019 | - | 2.1 |
[45] | Coated Pt | 0.0019 | - | 10.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisnal, A.; Fraile, J.-C.; Pérez-Turiel, J.; Muñoz-Martinez, V.; Müller, C.; R. Ihmig, F. A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes. Sensors 2018, 18, 4152. https://doi.org/10.3390/s18124152
Cisnal A, Fraile J-C, Pérez-Turiel J, Muñoz-Martinez V, Müller C, R. Ihmig F. A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes. Sensors. 2018; 18(12):4152. https://doi.org/10.3390/s18124152
Chicago/Turabian StyleCisnal, Ana, Juan-Carlos Fraile, Javier Pérez-Turiel, Victor Muñoz-Martinez, Carsten Müller, and Frank R. Ihmig. 2018. "A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes" Sensors 18, no. 12: 4152. https://doi.org/10.3390/s18124152
APA StyleCisnal, A., Fraile, J. -C., Pérez-Turiel, J., Muñoz-Martinez, V., Müller, C., & R. Ihmig, F. (2018). A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes. Sensors, 18(12), 4152. https://doi.org/10.3390/s18124152