A Bayesian Density Model Based Radio Signal Fingerprinting Positioning Method for Enhanced Usability
<p>Comparison of probability distributions: (<b>a</b>) a typical comparison of the RSSI probability density derived with the histogram (<math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>O</mi> </mrow> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> = 74, STD = 3.186) and Weibull signal model (cyan line, referring to the right axis); (<b>b</b>) Weibull-based probability distribution (<math display="inline"><semantics> <mrow> <mi>k</mi> </mrow> </semantics></math> = 2.5, λ = 8.4428, <span class="html-italic">θ</span> = 67) with 17,874 samples (blue line) vs. the histogram probability distribution with 17,874 samples (red line). The RSSI is in the unit of –dBm in this paper.</p> "> Figure 2
<p>The (<b>a</b>) positioning error and (<b>b</b>) cumulative distribution function (CDFs) of different RSSI ranges.</p> "> Figure 3
<p>Second-floor plan: Area (<b>A</b>) is the corridor between the students’ computer labs, which is characterized by a large flow of people, and is large, and has a complex Wi-Fi signal environment. Area (<b>B</b>) is a large, spacious lobby with fewer Wi-Fi signals. Area (<b>C</b>) is the corridor between the teacher’s office characterized by a simple physical environment and a simple Wi-Fi signal environment. The area in the first picture (where there is no reference point) is private and cannot be tested.</p> "> Figure 4
<p>Fourth-floor plan: Area (<b>A</b>) is a large conference room that is irregular and has fewer Wi-Fi signals. Areas (<b>B</b>,<b>C</b>) are different types of corridors with simple physical environments and simple Wi-Fi signal environments. The area in the first picture (where there is no reference point) is private and cannot be tested.</p> "> Figure 5
<p>Comparison of probability distributions: (<b>a</b>) Weibull-based probability distribution with 20 samples (cyan line) vs. Weibull-based probability distribution with 30 samples (blue line) vs. histogram probability distribution with 30 samples (green line) vs. histogram probability distribution with all samples (red line). (<b>b</b>) Weibull-based probability distribution with 20 samples (cyan line) vs. Weibull-based probability distribution with 30 samples (blue line) vs. histogram probability distribution with 30 samples (green line) vs. Weibull-based probability distribution with all samples (red line).</p> "> Figure 6
<p>(<b>a</b>) Probability densities estimated using all samples (red line) and each probability density function (PDF) estimated with the Weibull signal model for all sessions with sets of 30 RSSI measurement samples (cluster of green lines). (<b>b</b>) The cyan dashed line connects the mean of the value of all sessions plus the variance of the value of all sessions (magenta triangles), the mean of the value of all sessions (blue stars), and the mean of the value of all sessions minus the variance of the value of all sessions (inverted magenta triangles); the red line is the baseline distribution.</p> "> Figure 7
<p>The (<b>a</b>,<b>b</b>) CDFs of the three algorithms on the second floor.</p> "> Figure 8
<p>The (<b>a</b>,<b>b</b>) CDFs of the three algorithms on the fourth floor.</p> ">
Abstract
:1. Introduction
2. Fingerprinting Positioning Using Radio RSSI Measurements
2.1. Radio Map Learning Phase
2.2. Position Inference Phase
3. Bayesian Position Estimation Approach Based on the Weibull Signal Model
3.1. Weibull–Bayesian Density Model of Radio Signals
3.2. Fingerprinting Positioning Using the Weibull–Bayesian Density Model
4. Experiments and Results
4.1. Experimental Environment and Process
4.2. Validation of the Weibull–Bayesian Density Model
4.3. Indoor Positioning Performance Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, S.; Chan, S.H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2017, 18, 466–490. [Google Scholar] [CrossRef]
- Global Indoor Location Market Analysis (2017–2023). Available online: https://www.reportlinker.com/p05207399/Global-Indoor-Location-Market-Analysis.html (accessed on 23 November 2017).
- Moreira, A.; Silva, I.; Meneses, F.; Nicolau, M.J.; Pendão, C.; Torres-Sospedra, J. Multiple simultaneous Wi-Fi measurements in fingerprinting indoor positioning. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Jovan Powar, C.G.; Harle, R. Assessing the Impact of Multi-Channel BLE Beacons on Fingerprint-based Positioning. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Jiménez, A.R.; Seco, F. Combining RSS-based trilateration methods with radio-tomographic imaging: Exploring the capabilities of long-range RFID systems. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 13–16. [Google Scholar]
- Jiménez, A.R.; Zampella, F.; Seco, F. Light-Matching: A new Signal of Opportunity for Pedestrian Indoor Navigation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Montbeliard-Belfort, France, 28–31 October 2013; pp. 777–786. [Google Scholar]
- Antigny, N.; Servières, M.; Renaudin, V. Pedestrian Track Estimation with Handheld Monocular Camera and Inertial-Magnetic Sensor for Urban Augmented Reality. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Hanley, D.; Faustino, A.; Zelman, S.; Degenhardt, D.; Bretl, T. MagPIE: A Dataset for Indoor Positioning with Magnetic Anomalies. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017. [Google Scholar]
- Vaughan-Nichols, S.J. Will mobile computing’s future be location, location, location? Computer 2009, 42, 14–17. [Google Scholar] [CrossRef]
- Torres-Sospedra, J.; Jiménez, A.R.; Moreira, A.; Lungenstrass, T.; Lu, W.; Knauth, S.; Mendoza-Silva, G.M.; Seco, F.; Pérez-Navarro, A.; Nicolau, M.J.; et al. Off-Line Evaluation of Mobile-Centric Indoor Positioning Systems: The Experiences from the 2017 IPIN Competition. Sensors 2018, 18, 487. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.; Piche, R. A survey of selected indoor positioning methods for smartphones. IEEE Commun. Surv. Tutor. 2017, 19, 1347–1370. [Google Scholar] [CrossRef]
- Günther, A.; Hoene, C. Measuring Round Trip Times to Determine the Distance Between WLAN Nodes. In Proceedings of the 4th IFIP-TC6 International Conference on Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communication Systems, Waterloo, ON, Canada, 2–6 May 2005; pp. 768–779. [Google Scholar]
- Li, Q.; Li, W.; Sun, W.; Wang, J.; Li, J. Wi-Fi indoor localization algorithm based on rssi and assistant nodes collaboration. J. Electron. Measur. Instrum. 2016, 30, 794–802. [Google Scholar]
- Fang, S.; Cheng, Y.; Chien, Y. Exploiting Sensed Radio Strength and Precipitation for Improved Distance Estimation. IEEE Sens. J. 2018, 18, 6863–6873. [Google Scholar] [CrossRef]
- Whitehouse, K.; Karlof, C.; Culler, D. A practical evaluation of radio signal strength for ranging-based localization. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 11, 41–52. [Google Scholar] [CrossRef]
- Pivato, P.; Palopoli, L.; Petri, D. Accuracy of RSS-Based Centroid Localization Algorithms in an Indoor Environment. IEEE Trans. Instrum. Meas. 2011, 60, 3451–3460. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, H.; Juurakko, S.; Lahti, T.; Korhonen, R.; Lahteenmaki, J. Experimental Evaluation of Location Methods Based on Signal-Strength Measurements. IEEE Trans. Veh. Technol. 2007, 56, 287–296. [Google Scholar] [CrossRef]
- Le Dortz, N.; Gain, F.; Zetterberg, P. WiFi Fingerprint Indoor Positioning System Using Probability Distribution Comparison. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 2301–2304. [Google Scholar]
- Chen, B.; Liu, R.; Chen, Y.; Liu, J.; Jiang, X.; Liu, D. WiFi fingerprint based self-adaptive indoor localization in the dynamic environment. Chin. J. Sens. Actuators 2015, 28, 729–738. [Google Scholar]
- Llombart, M.; Ciurana, M.; Barcelo-Arroyo, F. On the Scalability of a Novel WLAN Positioning System based on Time of Arrival Measurements. In Proceedings of the 5th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 27 March 2006; pp. 15–21. [Google Scholar]
- Tang, J.; Chen, Y.; Chen, L.; Liu, J.; Hyyppä, J.; Kukko, A.; Kaartinen, H.; Hyyppä, H.; Chen, R. Fast fingerprint database maintenance for indoor positioning based on UGV SLAM. Sensors 2015, 15, 5311–5330. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Cho, S. Modular Bayesian Networks with Low-Power Wearable Sensors for Recognizing Eating Activities. Sensors 2017, 17, 2877. [Google Scholar] [Green Version]
- Berkvens, R.; Peremans, H.; Weyn, M. Conditional Entropy and Location Error in Indoor Localization Using Probabilistic Wi-Fi Fingerprinting. Sensors 2016, 16, 1636. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Jiang, M.; Liang, J.; Qin, X.; Hu, M.; Peng, T.; Hu, X. Expansion RSS-based Indoor Localization Using 5G WiFi Signal. In Proceedings of the IEEE International Conference on Computational Intelligence and Communication Networks, Bhopal, India, 14–16 November 2014; pp. 510–514. [Google Scholar]
- Cramariuc, A.; Huttunen, H.; Lohan, S. Clustering benefits in mobile-centric WiFi positioning in multi-floor buildings. In Proceedings of the 2016 International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, 28–30 June 2016. [Google Scholar]
- Marques, N.; Meneses, F.; Moreira, A. Combining similarity functions and majority rules for multi-building, multi-floor, WiFi Positioning. In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 13–15 November 2012. [Google Scholar]
- He, C.; Guo, S.; Wu, Y.; Yang, Y. A novel radio map construction method to reduce collection effort for indoor localization. Measurement 2016, 94, 423–431. [Google Scholar] [CrossRef]
- Racko, J.; Machaj, J.; Brida, P. Wi-Fi fingerprint radio map creation by using interpolation. Procedia Eng. 2017, 192, 753–758. [Google Scholar] [CrossRef]
- Ferris, B.; Hahnel, D.; Fox, D. Gaussian Processes for Signal Strength-Based Location Estimation. In Proceedings of the Robotics Science and Systems, Ann Arbor, MI, USA, 20–22 June 2006. [Google Scholar]
- Ferris, B.; Fox, D.; Lawrence, D. WiFi-SLAM Using Gaussian Process Latent Variable Models. In Proceedings of the National Conference on Artificial Intelligence, Hyderabad, India, 8 January 2007; pp. 2480–2485. [Google Scholar]
- Liu, J.; Chen, R.; Pei, L.; Chen, W.; Tenhunen, T.; Kuusniemi, H.; Kröger, T.; Chen, Y. Accelerometer assisted robust wireless signal positioning based on a hidden Markov model. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010; pp. 488–497. [Google Scholar]
- Kushki, A.; Plataniotis, K.N.; Venetsanopoulos, A.N. Kernel-based positioning in wireless local area networks. IEEE Trans. Mob. Comput. 2007, 6, 689–705. [Google Scholar] [CrossRef]
- Kaemarungsi, K.; Krishnamurthy, P. Properties of Indoor Received Signal Strength for WLAN Location Fingerprinting. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, Boston, MA, USA, 26 August 2004; pp. 14–23. [Google Scholar]
- Li, B.; Wang, Y.; Lee, H.K.; Dempster, A.; Rizos, C. Method for yielding a database of location fingerprints in WLAN. IEE Proc. Commun. 2005, 152, 580–586. [Google Scholar] [CrossRef]
- Badawy, O.M.; Hasan, M.A.B. Decision Tree Approach to Estimate User Location in WLAN based on Location Fingerprinting. In Proceedings of the National Radio Science Conference, Cairo, Egypt, 13–15 March 2007; pp. 1–10. [Google Scholar]
- Yan, Y.; Tan, Q.; Li, P.; Yang, H. Study on WIFI Indoor Location Techniques based on Android. In Proceedings of the 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), Dalian, China, 25–27 December 2017. [Google Scholar]
- Chen, L.; Li, B.; Zhao, K.; Rizos, C.; Zheng, Z. An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning. Sensors 2013, 13, 11085–11096. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Xu, Y.; Ma, L. Research on RSS based Indoor Location Method. In Proceedings of the 2009 Pacific-Asia Conference on Knowledge Engineering and Software Engineering, Shenzhen, China, 19–20 December 2009; pp. 205–208. [Google Scholar]
- Youssef, M.A.; Agrawala, A.; Shankar, A.U. WLAN Location Determination via Clustering and Probability Distributions. In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, Fort Worth, TX, USA, 26 March 2003; pp. 143–150. [Google Scholar]
- Liu, J.; Chen, R.; Chen, Y.; Pei, L.; Chen, L. iParking: An intelligent indoor location-based smartphone parking service. Sensors 2012, 12, 14612–14629. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Liu, J.; Guinness, R.; Chen, Y.; Kuusniemi, H.; Chen, R. Using LS-SVM based motion recognition for smartphone indoor wireless positioning. Sensors 2012, 12, 6155–6175. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Chen, R.; Liu, J.; Kuusniemi, H.; Tenhunen, T.; Chen, Y. Using inquiry-based bluetooth RSSI probability distributions for indoor positioning. J. Glob. Position. Syst. 2010, 9, 122–130. [Google Scholar]
- Sun, Y.; Xu, Y.; Ma, L.; Deng, Z. KNN-FCM Hybrid Algorithm for Indoor Location in WLAN. In Proceedings of the 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China, 19–20 December 2009; pp. 251–254. [Google Scholar]
- Machaj, J.; Piché, R.; Brida, P. Rank Based Fingerprinting Algorithm for Indoor Positioning. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011. [Google Scholar]
- Torres-Sospedra, J.; Montoliu, R.; Trilles, S.; Belmonte, Ó.; Huerta, J. Comprehensive Analysis of Distance and Similarity Measures for Wi-Fi Fingerprinting Indoor Positioning Systems. Expert Syst. Appl. 2015, 42, 9263–9278. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Hua, X.; Qiu, W.; Xue, W.; Zhou, D. A new combinatorial optimization algorithm for WiFi positioning. Eng. Surv. Mapp. 2017, 26, 14–18. [Google Scholar]
- Escobar, M.D.; West, M. Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 1995, 90, 577–588. [Google Scholar] [CrossRef]
- Argiento, R.; Guglielmi, A.; Pievatolo, A. Bayesian density estimation and model selection using nonparametric hierarchical mixtures. Comput. Stat. Data Anal. 2010, 54, 816–832. [Google Scholar] [CrossRef] [Green Version]
- Dunson, D.B.; Pillai, N.; Park, J.-H. Bayesian density regression. J. R. Stat. Soc. Series B 2007, 69, 163–183. [Google Scholar] [CrossRef] [Green Version]
- Kaemarungsi, K. Distribution of WLAN Received Signal Strength Indication for Indoor Location Determination. In Proceedings of the 1st International Symposium on Wireless Pervasive Computing, Phuket, Thailand, 16–18 January 2006. [Google Scholar]
- Youssef, M.A. HORUS: A WLAN-Based Indoor Location Determination System. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2004. [Google Scholar]
- Xiang, Z.; Song, S.; Chen, J.; Wang, H.; Huang, J.; Gao, X. A wireless LAN-based indoor positioning technology. IBM J. Res. Dev. 2004, 48, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, R.; Pei, L.; Guinness, R.; Kuusniemi, H. A hybrid smartphone indoor positioning solution for mobile LBS. Sensors 2012, 12, 17208–17233. [Google Scholar] [CrossRef] [PubMed]
- Sagias, N.C.; Karagiannidis, G.K. Gaussian class multivariate weibull distributions: Theory and applications in fading channels. IEEE Trans. Inf. Theory 2005, 51, 3608–3619. [Google Scholar] [CrossRef]
- Papoulis, A. Probability, random variables, and stochastic processes. Phys. Today 2001, 20, 135. [Google Scholar] [CrossRef]
- Roos, T.; Myllymäki, P.; Tirri, H.; Misikangas, P.; Sievänen, J. Probabilistic approach to WLAN user location estimation. Int. J. Wirel. Inf. Networks 2002, 9, 155–164. [Google Scholar] [CrossRef]
±4 dBm | ±5 dBm | ±6 dBm | |
---|---|---|---|
RMS | 2.41 | 2.38 | 2.38 |
Mean error (m) | 1.85 | 1.81 | 1.81 |
95% error (m) | 5.17 | 4.5 | 4.69 |
Histogram 30 s | Weibull bin | Weibull PDF | |||
---|---|---|---|---|---|
20 s | 30 s | 20 s | 30 s | ||
RMS | 3.27 | 2.79 | 2.9 | 2.65 | 2.59 |
Mean error (m) | 2.59 | 2.21 | 2.25 | 2.1 | 2.03 |
95% error (m) | 6.3 | 5.39 | 5.81 | 5.39 | 5.22 |
Histogram 30 s | Weibull bin | Weibull PDF | |||
---|---|---|---|---|---|
20 s | 30 s | 20 s | 30 s | ||
RMS | 2.87 | 2.12 | 2.61 | 1.94 | 1.86 |
Mean error (m) | 1.96 | 1.54 | 1.79 | 1.42 | 1.37 |
95% error (m) | 6.18 | 4.19 | 5.45 | 3.84 | 3.63 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, J.; Yang, F.; Niu, X.; Li, L.; Wang, Z.; Chen, R. A Bayesian Density Model Based Radio Signal Fingerprinting Positioning Method for Enhanced Usability. Sensors 2018, 18, 4063. https://doi.org/10.3390/s18114063
Li Z, Liu J, Yang F, Niu X, Li L, Wang Z, Chen R. A Bayesian Density Model Based Radio Signal Fingerprinting Positioning Method for Enhanced Usability. Sensors. 2018; 18(11):4063. https://doi.org/10.3390/s18114063
Chicago/Turabian StyleLi, Zheng, Jingbin Liu, Fan Yang, Xiaoguang Niu, Leilei Li, Zemin Wang, and Ruizhi Chen. 2018. "A Bayesian Density Model Based Radio Signal Fingerprinting Positioning Method for Enhanced Usability" Sensors 18, no. 11: 4063. https://doi.org/10.3390/s18114063