A Novel Scheme for MIMO-SAR Systems Using Rotational Orbital Angular Momentum
<p>Geometry of the orbital angular momentum (OAM)-based multi-input multi-output (MIMO)-SAR system.</p> "> Figure 2
<p>Distribution of the equivalent phase centers in the OAM-based MIMO-SAR system.</p> "> Figure 3
<p>Doppler frequency spectrum of the received signal.</p> "> Figure 4
<p>Processing flowchart of the OAM-based MIMO-SAR data.</p> "> Figure 5
<p>Prototypes of the transmitting antenna platform.</p> "> Figure 6
<p>(<b>a</b>) Schematic configuration of the single-in–single-out (SISO) mode; (<b>b</b>) experimental scenario of the SISO mode.</p> "> Figure 7
<p>The rotational Doppler frequency shifts of different OAM echoes versus the rotation speed.</p> "> Figure 8
<p>(<b>a</b>) Schematic configuration of the MISO mode; (<b>b</b>) experimental scenario of the MISO mode.</p> "> Figure 9
<p>The frequency spectrums of the received signals for the rotation speed is −5 r/s (dash red), and the rotation speed is +5 r/s (solid blue).</p> ">
Abstract
:1. Introduction
2. An OAM-Based MIMO-SAR System Model
3. A Novel RDE-Based Scheme
- (1)
- Range compression of the raw data;
- (2)
- Azimuth Fourier transform of the data;
- (3)
- Separating the data of different OAM modes in the range–Doppler domain by bandpass filtering;
- (4)
- Imaging processing to obtain the image. The 2-D SAR image can be obtained by the classic SAR imaging algorithm, e.g., the Range–Doppler algorithm or the ωK algorithm [12].
4. Results
4.1. SISO Mode
4.2. MISO Mode
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krieger, G.; Gebert, N.; Moreira, A. Multidimensional waveform encoding, a new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Krieger, G. MIMO-SAR: Opportunities and pitfalls. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2628–2645. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. Digital beamforming techniques for spaceborne radar remote sensing. In Proceedings of the 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Cristallini, D.; Pastina, D.; Lombardo, P. Exploiting MIMO SAR potentialities with efficient cross-track constellation configurations for improved range resolution. IEEE Trans. Geosci. Remote Sens. 2011, 49, 38–52. [Google Scholar] [CrossRef]
- Kim, J.; Younis, M.; Moreira, A.; Wiesbeck, W. A novel OFDM waveform for fully polarimetric SAR data acquisition. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 1–4. [Google Scholar]
- Krieger, G.; Younis, M.; Huber, S.; Bordoni, F.; Patyuchenko, A.; Kim, J.; Laskowski, P.; Villano, M.; Romme, T.; López-Dekker, P.; et al. MIMO-SAR and the orthogonality confusion. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1533–1536. [Google Scholar]
- Wang, J.; Liang, X.D.; Chen, L.Y.; Li, K. A Novel Space–Time Coding Scheme Used for MIMO-SAR Systems. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1556–1560. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.Y.; Liang, X.D.; Ding, C.B.; Li, K. Implementation of the OFDM chirp waveform on MIMO SAR systems. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5218–5228. [Google Scholar] [CrossRef]
- Tamburini, F.; Mari, E.; Sponselli, A.; Thidé, B.; Bianchini, A.; Romanato, F. Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 033001. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, D.; Jiang, X. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum. Sci. Rep. 2017, 7, 15412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Cheng, Y.Q.; Gao, Y.; Li, X.; Qin, Y.L.; Wang, H.Q. Super-resolution radar imaging based on experimental OAM beams. Appl. Phys. Lett. 2017, 110, 164102. [Google Scholar] [CrossRef]
- Bu, X.X.; Zhang, Z.; Chen, L.Y.; Liang, X.D.; Tang, H.B.; Wang, X.M. Implementation of Vortex Electromagnetic Waves High-Resolution Synthetic Aperture Radar Imaging. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 764–767. [Google Scholar] [CrossRef]
- Courtial, J.; Robertson, D.A.; Dholakia, K.; Allen, L.; Padgett, M.J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 1998, 81, 4828–4830. [Google Scholar] [CrossRef]
- Lavery, M.P.J.; Speirits, F.C.; Barnett, S.M.; Padgett, M.J. Detection of a spinning object using light’s orbital angular momentum. Science 2013, 341, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, L. Millimetre wave with rotational orbital angular momentum. Sci. Rep. 2016, 6, 31921. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, L. Detecting the Orbital Angular Momentum of Electro-Magnetic Waves Using Virtual Rotational Antenna. Sci. Rep. 2017, 7, 4585. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.L.; Li, S.H.; Xu, O.; Li, W.; Wang, Y. Three dimensional SAR imaging based on vortex electromagnetic waves. Remote Sens. Lett. 2018, 9, 343–352. [Google Scholar] [CrossRef]
- Qian, J.H.; Lops, M.; Zheng, L.; Wang, X.D.; He, Z.S. Joint System Design for Co-Existence of MIMO Radar and MIMO Communication. IEEE Trans. Signal Process. 2018, 66, 3504–3519. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Daldorff, L.K.S.; Bergman, J.E.S.; Karlsson, R.L.; Thidé, B.; Forozesh, K.; Carozzi, T.D.; Isham, B. Orbital angular momentum in radio—A system study. IEEE Trans. Antennas Propag. 2010, 58, 565–572. [Google Scholar] [CrossRef]
- Courtial, J.; Dholakia, K.; Robertson, D.A.; Allen, L.; Padgett, M.J. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett. 1998, 80, 3217–3219. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, S.; Zhang, W.; Jin, X.; Chi, H.; Zhang, X. Experimental Demonstration of the Capacity Gain of Plane Spiral OAM-Based MIMO System. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 757–759. [Google Scholar] [CrossRef]
- Turnbull, G.A.; Robertson, D.A.; Smith, G.M.; Allen, L.; Padgett, M.J. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phase plate. Opt. Commun. 1996, 127, 183–188. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, S.; Hui, X.; Dong, R.; Jin, X.; Chi, H.; Zhang, X. Mode Division Multiplexing Communication Using Microwave Orbital Angular Momentum: An Experimental Study. IEEE Trans. Wirel. Commun. 2017, 16, 1308–1318. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, X.; Zhang, Z.; Liang, X.; Chen, L.; Tang, H.; Zeng, Z.; Wang, J. A Novel Scheme for MIMO-SAR Systems Using Rotational Orbital Angular Momentum. Sensors 2018, 18, 3511. https://doi.org/10.3390/s18103511
Bu X, Zhang Z, Liang X, Chen L, Tang H, Zeng Z, Wang J. A Novel Scheme for MIMO-SAR Systems Using Rotational Orbital Angular Momentum. Sensors. 2018; 18(10):3511. https://doi.org/10.3390/s18103511
Chicago/Turabian StyleBu, Xiangxi, Zhuo Zhang, Xingdong Liang, Longyong Chen, Haibo Tang, Zheng Zeng, and Jie Wang. 2018. "A Novel Scheme for MIMO-SAR Systems Using Rotational Orbital Angular Momentum" Sensors 18, no. 10: 3511. https://doi.org/10.3390/s18103511
APA StyleBu, X., Zhang, Z., Liang, X., Chen, L., Tang, H., Zeng, Z., & Wang, J. (2018). A Novel Scheme for MIMO-SAR Systems Using Rotational Orbital Angular Momentum. Sensors, 18(10), 3511. https://doi.org/10.3390/s18103511