Non-Stationary Platform Inverse Synthetic Aperture Radar Maneuvering Target Imaging Based on Phase Retrieval
<p>Aerostat borne ISAR imaging geometry model.</p> "> Figure 2
<p>The schematic of the OSS phase retrieval algorithm.</p> "> Figure 3
<p>Block scheme of the proposed method.</p> "> Figure 4
<p>(<b>a</b>) A hypothetical target composed of perfect point scatterers. (<b>b</b>) The amplitude of the raw data.</p> "> Figure 5
<p>Imaging results with the radar platform displacement parameters P1. (<b>a</b>) RD algorithm; (<b>b</b>) the proposed method.</p> "> Figure 6
<p>Imaging results with the radar platform displacement parameters P2. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 7
<p>Imaging results with the radar platform displacement parameters P3. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 7 Cont.
<p>Imaging results with the radar platform displacement parameters P3. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 8
<p>Imaging results with the radar platform displacement parameters P4. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 9
<p>Spectrograms of time pulses. (<b>a</b>) before applying the proposed method; (<b>b</b>) after applying the proposed method.</p> "> Figure 10
<p>Imaging results with the radar platform vibration parameters P5. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 11
<p>Imaging results with the radar platform vibration parameters P6. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 11 Cont.
<p>Imaging results with the radar platform vibration parameters P6. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 12
<p>Imaging results with the radar platform vibration parameters P7. (<b>a</b>) RD algorithm; (<b>b</b>) cross-correlation method; (<b>c</b>) minimum entropy method; (<b>d</b>) the proposed method.</p> "> Figure 13
<p>Spectrograms of time pulses. (<b>a</b>) before applying the proposed method; (<b>b</b>) after applying the proposed method.</p> "> Figure 14
<p>Imaging results with the radar platform displacement parameters P8. (<b>a</b>) P9; (<b>b</b>) P10.</p> "> Figure 15
<p>Imaging results with the radar platform vibration parameters P11. (<b>a</b>) P12; (<b>b</b>) P13.</p> ">
Abstract
:1. Introduction
2. Non-stationary Platform ISAR Imaging Analysis
2.1. ISAR Imaging Geometry Model and Echo Analysis of Platform Displacement
2.2. ISAR Echo Analysis of Platform Fluctuation
3. Non-Stationary Platform ISAR Imaging Based on Improved Phase Retrieval Algorithm
3.1. Phase Retrieval Principle
3.2. OSS Phase Retrieval Algorithm
- is the signal to be recovered with initial random phase. Obtain a Fourier pattern by performing the Fourier transform to .
- Retain the phase information of , but replace the magnitude of with the known Fourier intensity to generate a new complex-valued function , where is the magnitude of the measured ISAR echo signal.
- Perform an inverse Fourier transform on to generate a new image . Revise on the basis of HIO algorithm and get a new .
- Calculate the next iteration image :
3.3. ISAR Autofocus Imaging Method Based on Improved Phase Retrieval
4. Simulation Analysis
4.1. Imaging Results with Different Radial Displacements of Radar Platform
4.2. Imaging Results with Different Radar Platform Vibration Parameters
4.3. Imaging Results of the Proposed Method with Different Target Motion Parameters under the Condition of Non-Stationary Radar Platform
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Zhang, J.; Zhai, Q.; Zhan, R.; Lu, D. ISAR imaging using a new stepped-frequency signal format. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4291–4305. [Google Scholar] [CrossRef]
- Zhou, X.; Wei, G.; Wu, S.; Wang, D. Three-dimensional ISAR imaging method for high-speed targets in short-range using impulse radar based on SIMO array. Sensors 2016, 16, 364. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Xia, S. ISAR imaging based on oversampling smoothness of prior knowledge. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 1597–1600. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, H.; Liao, G.; Su, T.; Liu, Z.; Liu, Q.H. ISAR imaging of targets with complex motions based on a noise-resistant parameter estimation algorithm without nonuniform axis. IEEE Sens. J. 2016, 16, 2509–2518. [Google Scholar] [CrossRef]
- Yong, W.; Abdelkader, A.C.; Zhao, B.; Wang, J. ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform. Sensors 2015, 15, 22401–22418. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation. Sensors 2015, 15, 6905–6923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P. The Short Wave Aerostat-Mounted Imager (SWAMI): A novel platform for acquiring remotely sensed data from a tethered balloon. Remote Sens. Environ. 2006, 103, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Niu, Z.; Wu, Y. A Blockage based Channel Model for High Altitude Platform Communications. Chin. J. Electron. 2004, 32, 132–135. [Google Scholar] [CrossRef]
- Fan, L.; Shi, S.; Liu, Y.; Xu, S.; Chen, Z. A novel Range-Instantaneous-Doppler ISAR imaging algorithm for maneuvering targets via adaptive doppler spectrum extraction. Prog. Electromagnet. Res. C. 2015, 56, 109–118. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y. ISAR Imaging of Non-Uniformly Rotating Target via Range-Instantaneous-Doppler-Derivatives Algorithm. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2013, 7, 167–176. [Google Scholar] [CrossRef]
- Mateus, P.; Nico, G.; Tome, R.; Catalao, J. Experimental Study on the Atmospheric Delay Based on GPS, SAR Interferometry, and Numerical Weather Model Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 6–11. [Google Scholar] [CrossRef]
- Karakasiliotis, A.V.; Lazarov, A.D.; Frangos, P.V.; Boultadakis, G.; Kalognomos, G. Two-dimensional ISAR model and image reconstruction with stepped frequency-modulated signal. IET Signal Process. 2008, 2, 277–290. [Google Scholar] [CrossRef]
- Suwa, K.; Wakayama, T.; Iwamoto, M. Three-dimensional target geometry and target motion estimation method using multistatic ISAR movies and its performance. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2361–2373. [Google Scholar] [CrossRef]
- Ustun, D.; Ozdemir, C.; Akdagli, A.; Toktas, A.; Bicer, M.B. A powerful method based on artificial bee colony algorithm for translational motion compensation of ISAR image. Microw. Opt. Technol. Lett. 2014, 56, 2691–2698. [Google Scholar] [CrossRef]
- Xue, J.; Huang, L. An improved cross-correlation approach to parameter estimation based on fractional Fourier transform for ISAR motion compensation. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 1538–1542. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, X. Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans. Signal Process. 2015, 63, 3425–3434. [Google Scholar] [CrossRef]
- Shin, S.Y.; Myung, N.H. The application of motion compensation of ISAR image for a moving target in radar target recognition. Microwave Opt. Tech. Lett. 2008, 50, 1673–1678. [Google Scholar] [CrossRef]
- Li, D.; Zhan, M.; Liu, H.; Liao, G.; Liao, Y. A Robust Translational Motion Compensation Method for ISAR Imaging Based on Keystone Transform and Fractional Fourier Transform under Low SNR Environment. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2140–2156. [Google Scholar] [CrossRef]
- Chen, V.C.; Martorella, M. Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications; SciTech Publishing: Edison, NJ, USA, 2014; pp. 116–123. [Google Scholar]
- QI, Z.; Jing, Y.; You, S.Q.; Sun, H.B. The quasi-stationary platform of stratospheric ISAR imaging. J. China Univ. Posts Telecommun. 2013, 20, 156–160. [Google Scholar] [CrossRef]
- Shechtman, Y.; Eldar, Y.C.; Cohen, O.; Chapman, H.N.; Miao, J.; Segev, M. Phase Retrieval with Application to Optical Imaging: A contemporary overview. IEEE Signal Process. Mag. 2014, 32, 87–109. [Google Scholar] [CrossRef]
- Marchesini, S.; He, H.; Chapman, H.N.; Hauriege, S.P.; Noy, A.; Howells, M.R.; Weierstall, U.; Spence, J.C.H. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 2003, 68, 399–404. [Google Scholar] [CrossRef]
- Fannjiang, A. Absolute uniqueness of phase retrieval with random illumination. Inverse Probl. 2012, 28, 75008–75027. [Google Scholar] [CrossRef]
- Shenoy, B.A.; Mulleti, S.; Seelamantula, C.S. Exact phase retrieval in principal shift-invariant spaces. IEEE Trans. Signal Process. 2016, 64, 406–416. [Google Scholar] [CrossRef]
- Netrapalli, P.; Jain, P.; Sanghavi, S. Phase retrieval using alternating minimization. IEEE Trans. Signal Process. 2015, 63, 4814–4826. [Google Scholar] [CrossRef]
- Takajo, H.; Takahashi, T.; Ueda, R.; Taninaka, M. Further study on the convergence property of the hybrid input–output algorithm used for phase retrieval. J. Opt. Soc. Am. A 1998, 15, 2849–2861. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Xu, R.; Chen, C.C.; Zou, Y.; Miao, J. Oversampling smoothness: An effective algorithm for phase retrieval of noisy diffraction intensities. J. Appl. Crystallogr. 2013, 46, 312. [Google Scholar] [CrossRef] [PubMed]
- Schniter, P.; Rangan, S. Compressive phase retrieval via generalized approximate message passing. IEEE Trans. Signal Process. 2015, 63, 1043–1055. [Google Scholar] [CrossRef]
- Chen, C.C.; Miao, J.; Wang, C.W.; Lee, T.K. Application of optimization technique to noncrystalline X-ray diffraction microscopy: Guided hybrid input-output method. Phys. Rev. B 2007, 76, 3009–3014. [Google Scholar] [CrossRef]
- Ozdemir, C. Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2012; p. 263. [Google Scholar]
Parameter Name | Symbol | Value |
---|---|---|
Target’s initial position in range | R0 | 16 km |
Starting frequency | f0 | 9 GHz |
Frequency bandwidth | B | 125 MHz |
Pulse repetition frequency | PRF | 35 KHz |
Number of pulses | Npulse | 128 |
Number of bursts | Mburst | 128 |
Target radial velocity | vt | 5 m/s |
Target radial acceleration | at | 0.06 m/s2 |
Target’s rotational velocity | 0.02 rad/s |
Symbol | Parameter Value |
---|---|
P1 | vp = 0 m/s, ap = 0 m/s2 |
P2 | vp = 17 m/s, ap = 0.06 m/s2 |
P3 | vp = 13 m/s, ap = 0.6 m/s2 |
P4 | vp = 8 m/s, ap = 1.94 m/s2 |
P5 | L = 0.01m, fvb = 3 Hz |
P6 | L = 0.5m, fvb = 3 Hz |
P7 | L = 0.01m, fvb = 10 Hz |
P8 | vp = 25 m/s, ap = 0.2 m/s2 |
P9 | vt = 10 m/s, at = 0.5 m/s2 |
P10 | vt = 20 m/s, at = 1 m/s2 |
P11 | L = 1m, fvb = 20 Hz |
P12 | vt = 10 m/s, at = 0.5 m/s2 |
P13 | vt = 20 m/s, at = 1 m/s2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Xia, S.; Qin, Q.; Yang, T.; Qiao, Z. Non-Stationary Platform Inverse Synthetic Aperture Radar Maneuvering Target Imaging Based on Phase Retrieval. Sensors 2018, 18, 3333. https://doi.org/10.3390/s18103333
Shi H, Xia S, Qin Q, Yang T, Qiao Z. Non-Stationary Platform Inverse Synthetic Aperture Radar Maneuvering Target Imaging Based on Phase Retrieval. Sensors. 2018; 18(10):3333. https://doi.org/10.3390/s18103333
Chicago/Turabian StyleShi, Hongyin, Saixue Xia, Qi Qin, Ting Yang, and Zhijun Qiao. 2018. "Non-Stationary Platform Inverse Synthetic Aperture Radar Maneuvering Target Imaging Based on Phase Retrieval" Sensors 18, no. 10: 3333. https://doi.org/10.3390/s18103333
APA StyleShi, H., Xia, S., Qin, Q., Yang, T., & Qiao, Z. (2018). Non-Stationary Platform Inverse Synthetic Aperture Radar Maneuvering Target Imaging Based on Phase Retrieval. Sensors, 18(10), 3333. https://doi.org/10.3390/s18103333