A Clustering WSN Routing Protocol Based on k-d Tree Algorithm
<p>LEACH protocol topology.</p> "> Figure 2
<p>LEACH protocol phases.</p> "> Figure 3
<p>Radio energy model.</p> "> Figure 4
<p>Visualization of the k-d tree algorithm.</p> "> Figure 5
<p>k-d tree algorithm with <span class="html-italic">x</span>-dimension.</p> "> Figure 6
<p>k-d tree algorithm with dimension on <span class="html-italic">y</span>.</p> "> Figure 7
<p>Clustering using the k-d tree algorithm.</p> "> Figure 8
<p>Protocol header H-kdtree.</p> "> Figure 9
<p>Routing flowchart H-kdtree protocol.</p> "> Figure 10
<p>Evaluated scenarios.</p> "> Figure 11
<p>Cluster Head formation behavior.</p> "> Figure 12
<p>Dead nodes.</p> "> Figure 13
<p>Average energy.</p> "> Figure 14
<p>Delay behavior.</p> "> Figure 15
<p>Jitter behavior.</p> "> Figure 16
<p>Throughput behavior.</p> "> Figure 17
<p>General energy metrics with 200 nodes.</p> "> Figure 18
<p>General QoS metrics.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Cluster Formation
2.2. Cluster Head Selection
3. Background and Preliminaries
3.1. The LEACH Protocol
3.2. LEACH-C Protocol
- The Sink/BS node is static and is the one that organizes. the roles of each node in the network, centralizing information and cluster formation.
- When clusters are formed, they do not communicate between nodes to save energy.
- The Sink/BS node in the configuration phase establishes the CH nodes beforehand; therefore, the network can use energy more effectively.
3.3. k-d Tree Algorithm
Algorithm 1 k-d tree algorithm. |
Require: A set of points named P and the tree depth value Ensure: The root of the k-d tree
|
- Creates a root node with two subsets for the left side of the tree and for the right side of the tree.
- is the subset of initial data where the partitioning of points will begin. In this algorithm, x is used for even depth values and y is used for odd values.
- Repeat steps 1 to 14 to create the branches of the tree, where the input parameter with the input data set is the subset .
4. Proposed Protocol
- Dimension used for the division (x or y),
- Median value (),
- Limits of the nodes in each cluster.
4.1. Protocol Considerations
4.2. Configuration Phase
4.3. Transmission Phase
Algorithm 2 Cluster formation based on the k-d tree algorithm. |
Require: Matrix obtained in the flooding process, with the following fields: , , , . The variable is the value of the column to that corresponds to the dimension to be selected, where , . Ensure: List with the vectors of the positions selected in each cluster
|
5. Simulation and Results Analysis
5.1. Simulation Parameters
5.2. Simulation Metrics
5.2.1. End-to-End Delay (EED)
5.2.2. Throughput
5.2.3. Packet Delivery Ratio (PDR)
5.2.4. Jitter
5.2.5. Auxiliary Metrics
- First node died (FND): It is the number of rounds in the network until the first node has depleted its energy and died.
- Half of nodes died (HND):It is the number of rounds in the network until half of the nodes in the network have depleted their energy and died.
- Last node died (LND): It is the number of rounds in the network until all nodes in the network have depleted their energy and died.
5.3. Results and Discussion
5.4. Results Summary
5.5. Other Tests Performed
6. Conclusions and Future Work
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
CH | Cluster Head |
WSN | Wireless Sensor Networks |
IoT | Internet of Things |
CPU | Central Processing Unit |
LEACH | Low Energy Adaptive Clustering Hierarchy |
LEACH-C | Low Energy Adaptive Clustering Hierarchy-centralized |
QoS | Quality of Service |
PDR | Packet Drop Rate |
BS | Base Station |
GPS | Global Positioning System |
RSSI | Received Signal Strength Indicator |
TDMA | Time Division Multiple Access |
HEED | Hybrid. Energy-Efficient Distributed |
TEEN | Threshold sensitive Energy Efficient sensor Network |
NS-2 | Network Simulator |
EED | End-to-End Delay |
FND | First Node Died |
HND | Half of Nodes Died |
LND | Last Node Died |
H-kdtree | Hierarchy protocol based on the k-d tree algorithm |
References
- Ringwald, M.; Romer, K. Deployment of Sensor Networks: Problems and Passive Inspection. In Proceedings of the 2007 Fifth Workshop on Intelligent Solutions in Embedded Systems, Leganes, Spain, 21–22 June 2007. [Google Scholar]
- Anzola, J.; Bolaños, S.; Tarazona, G. Design Methodology for Self-organized Mobile Networks Based. Int. J. Interact. Multimed. Artif. Intell. 2016, 3, 46–53. [Google Scholar] [CrossRef]
- Wu, X.; Tang, D.; Qian, X. A Centralize Location Algorithm based on RSSI in Large-Scale Wireless Sensor Network. Procedia Eng. CEIS 2011, 15, 2004–2009. [Google Scholar] [CrossRef]
- Nighot, M.; Ghatol, A. GPS Based Distributed Communication Protocol for Static Sensor Network (GDCP). Procedia Comput. Sci. 2016, 78, 530–536. [Google Scholar] [CrossRef]
- Elhoseny, M.; Tharwat, A.; Yuan, X.; Hassanien, A.E. Optimizing K-coverage of mobile WSNs. Expert Syst. Appl. 2018, 92, 142–153. [Google Scholar] [CrossRef]
- Gupta, A.; Shekokar, N. A novel K-means L-layer algorithm for uneven clustering in WSN. In Proceedings of the 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 10–11 January 2017. [Google Scholar]
- Raval, D.; Raval, G.; Valiveti, S. Optimization of clustering process for WSN with hybrid harmony search and K-means algorithm. In Proceedings of the 2016 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 8–9 April 2016. [Google Scholar]
- Wang, Q.; Guo, S.; Hu, J.; Yang, Y. Spectral partitioning and fuzzy C-means based clustering algorithm for big data wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2018, 54. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Niu, J.; Liu, W. A K-medoids based clustering algorithm for wireless sensor networks. In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018. [Google Scholar]
- Gupta, V.; Doja, M. H-LEACH: Modified and Efficient LEACH Protocol for Hybrid Clustering Scenario in Wireless Sensor Networks. In Next-Generation Networks; Lobiyal, D.K., Mansotra, V., Singh, U., Eds.; Springer: Singapore, 2018; pp. 399–408. [Google Scholar]
- Haque, M.; Ahmad, T.; Imran, M. Review of Hierarchical Routing Protocols for Wireless Sensor Networks. In Intelligent Communication and Computational Technologies; Springer: Singapore, 2018; pp. 237–246. [Google Scholar]
- Rostami, A.S.; Badkoobe, M.; Mohanna, F.; Keshavarz, H.; Hosseinabadi, A.A.R.; Sangaiah, A.K. Survey on clustering in heterogeneous and homogeneous wireless sensor networks. J. Supercomput. 2018, 74, 277–323. [Google Scholar] [CrossRef]
- Yahiaoui, S.; Omar, M.; Bouabdallah, A.; Natalizio, E.; Challal, Y. An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU Int. J. Electron. Commun. 2018, 83, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Marappan, P.; Rodrigues, P. An energy efficient routing protocol for correlated data using CL-LEACH in WSN. Wirel. Netw. 2016, 22, 1415–1423. [Google Scholar] [CrossRef]
- Usha, M.; Sreenithi, S.; Sujitha, M.; Swarnalatha, S. Node density based clustering to maximize the network lifetime of WSN using multiple mobile elements. In Proceedings of the 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 20–22 April 2017. [Google Scholar]
- Grover, J.; Rani, R. Probabilistic Density Based Adaptive Clustering scheme to improve network survivability in WSN. In Proceedings of the Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Hefei, China, 11–13 July 2014. [Google Scholar]
- Shamshirband, S.; Amini, A.; Badrul, N.; Mat, L.; Wah, Y.; Furnell, S. D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. Measurement 2014, 55, 212–226. [Google Scholar] [CrossRef]
- Bhatti, D.M.S.; Saeed, N.; Nam, H. Fuzzy C-Means Clustering and Energy Efficient Cluster Head Selection for Cooperative Sensor Network. Sensors 2016, 16, 1459. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.x.; Zhang, M.; Gao, X.; Wang, W.; Li, X. A clustering WSN routing protocol based on node energy and multipath. Cluster Comput. 2017. [Google Scholar] [CrossRef]
- Amodu, O.A.; Raja Mahmood, R.A. Impact of the energy-based and location-based LEACH secondary cluster aggregation on WSN lifetime. Wirel. Netw. 2018, 24, 1379–1402. [Google Scholar] [CrossRef]
- Sabor, N.; Ahmed, S.M.; Abo-Zahhad, M.; Sasaki, S. ARBIC: An Adjustable Range Based Immune hierarchy Clustering protocol supporting mobility of Wireless Sensor Networks. Pervasive Mob. Comput. 2018, 43, 27–48. [Google Scholar] [CrossRef]
- Wang, T.; Peng, Z.; Wen, S.; Lai, Y.; Jia, W.; Cai, Y.; Tian, H.; Chen, Y. Reliable wireless connections for fast-moving rail users based on a chained fog structure. Inf. Sci. 2017, 379, 160–176. [Google Scholar] [CrossRef]
- Goyal, N.; Dave, M.; Verma, A. Energy Efficient Architecture for Intra and Inter Cluster Communication for Underwater Wireless Sensor Networks. Wirel. Pers. Commun. 2016, 89, 687–707. [Google Scholar] [CrossRef]
- Nair, K.; Kulkarni, J.; Warde, M.; Dave, Z.; Rawalgaonkar, V.; Gore, G.; Joshi, J. Optimizing power consumption in iot based wireless sensor networks using Bluetooth Low Energy. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Noida, India, 8–10 October 2015. [Google Scholar]
- Bozorgi, S.M.; Rostami, A.S.; Hosseinabadi, A.A.R.; Balas, V.E. A new clustering protocol for energy harvesting-wireless sensor networks. Comput. Electr. Eng. 2017, 64, 233–247. [Google Scholar] [CrossRef]
- Zuhra, F.T.; Bakar, K.A.; Ahmed, A.; Tunio, M.A. Routing protocols in wireless body sensor networks: A comprehensive survey. J. Netw. Comput. Appl. 2017, 99, 73–97. [Google Scholar] [CrossRef]
- Halder, S.; Das, S. Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes. J. Netw. Comput. Appl. 2014, 38, 106–124. [Google Scholar] [CrossRef]
- Madhja, A.; Nikoletseas, S.; Raptis, T. Hierarchical, collaborative wireless energy transfer in sensor networks with multiple Mobile Chargers. Comput. Netw. 2016, 97, 98–112. [Google Scholar] [CrossRef]
- Jung, K.; Lee, J.Y.; Jeong, H.Y. Improving adaptive cluster head selection of teen protocol using fuzzy logic for WMSN. Multimedia Tools Appl. 2017, 76, 18175–18190. [Google Scholar] [CrossRef]
- Arjunan, S.; Pothula, S. A survey on unequal clustering protocols in Wireless Sensor Networks. J. King Saud Univ. Comput. Inf. Sci. 2017. [Google Scholar] [CrossRef]
- Kaur, R.; Arora, S. Nature Inspired Range Based Wireless Sensor Node Localization Algorithms. Int. J. Interact. Multimedia Artif. Intell. 2017, 4, 7–17. [Google Scholar] [CrossRef]
- Bahuguna, Y.; Punetha, D.; Verma, P. An analytic Study of the Key Factors Influencing the Design and Routing Techniques of a Wireless Sensor Network. Int. J. Interact. Multimedia Artif. Intell. 2017, 4, 11–15. [Google Scholar] [CrossRef]
- Pereira, A.A.; Espada, J.P.; Crespo, R.G.; Aguilar, S.R. Platform for controlling and getting data from network connected drones in indoor environments. Future Gener. Comput. Syst. 2018. [Google Scholar] [CrossRef]
- Jiménez, A.; Bolaños, S.; Anzola, J. Decentralized model for autonomous robotic systems based on Wireless Sensor Network. J. Eng. Appl. Sci. 2016, 11, 11378–11382. [Google Scholar]
- Molano, J.I.R.; Lovelle, J.M.C.; Montenegro, C.E.; Granados, J.J.R.; Crespo, R.G. Metamodel for integration of Internet of Things, Social Networks, the Cloud and Industry 4.0. J. Ambient Intell. Hum. Comput. 2018, 9, 709–723. [Google Scholar] [CrossRef]
- Jiménez, A.; García-Díaz, V.; Anzola, J. Design of a System for Vehicle Traffic Estimation for Applications on IoT. In Proceedings of the the 4th Multidisciplinary International Social Networks Conference, Bangkok, Thailand, 17–19 July 2017. [Google Scholar]
- Anzola, J.P.; Cuellar, J.C. Evaluation of QoS in the Transmission of Video H.264/SVC for Ad Hoc Networks of Two Jumps. Int. J. Comput. Appl. 2014, 108, 1–8. [Google Scholar]
- Mottaghi, S.; Reza, M. Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes. AEU Int. J. Electron. Commun. 2015, 69, 507–514. [Google Scholar] [CrossRef]
- Manzoor, B.; Javaid, N.; Rehman, O.; Akbar, M.; Nadeem, Q.; Iqbal, A.; Ishfaq, M. Q-LEACH: A New Routing Protocol for WSNs. arXiv, 2013; arXiv:1303.5240. [Google Scholar] [CrossRef]
- Karim, L.; Nasser, N. Reliable location-aware routing protocol for mobile wireless sensor network. IET Commun. 2012, 6, 2149–2158. [Google Scholar] [CrossRef]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Du, D.; Hu, X. Steiner Tree Problems in Computer Communication Networks; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2008. [Google Scholar]
- Shi, S.; Liu, X.; Gu, X. An energy-efficiency Optimized LEACH-C for wireless sensor networks. In Proceedings of the 7th International Conference on Communications and Networking in China, Kun Ming, China, 8–10 Auguest 2012. [Google Scholar]
- Sivakumar, P.; Radhika, M. Performance Analysis of LEACH-GA over LEACH and LEACH-C in WSN. Procedia Comput. Sci. 2018, 125, 248–256. [Google Scholar] [CrossRef]
- Ma, Z.; Li, G.; Gong, Q. Improvement on LEACH-C protocol of wireless sensor network. Int. J. Future Gener. Commun. Netw. 2016, 9, 183–192. [Google Scholar] [CrossRef]
- Kakde, H.M. Range Searching using KD tree. 25 August 2005. Available online: http://151.100.17.32/pub/Estrinfo/Materiale/kdtree.pdf (accessed on 29 August 2018).
- Ahmed, G.; Zou, J.; Fareed, M.M.S.; Zeeshan, M. Sleep-awake energy efficient distributed clustering algorithm for wireless sensor networks. Comput. Electr. Eng. 2016, 56, 385–398. [Google Scholar] [CrossRef]
- Scholar), V.K.A.R.; Sharma, V.; Sachdeva, M. A survey on LEACH and other’s routing protocols in wireless sensor network. Opt. Int. J. Light Electron Opt. 2016, 127, 6590–6600. [Google Scholar] [CrossRef]
- Alharthi, S.A.; Johnson, P.A. Threshold sensitive heterogeneous LEACH protocol for wireless sensor networks. In Proceedings of the 2016 24th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–23 November 2016. [Google Scholar]
- Lung, C.H.; Zhou, C. Using hierarchical agglomerative clustering in wireless sensor networks: An energy-efficient and flexible approach. Ad Hoc Netw. 2010, 8, 328–344. [Google Scholar] [CrossRef]
- Syarif, A.; Abouaissa, A.; Lorenz, P. Operator calculus approach for route optimizing and enhancing wireless sensor network. J. Netw. Comput. Appl. 2017, 97. [Google Scholar] [CrossRef]
- Taheri, H.; Neamatollahi, P.; Younis, O.M.; Naghibzadeh, S.; Yaghmaee, M.H. An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Netw. 2012, 10, 1469–1481. [Google Scholar] [CrossRef]
- Iqbal, A.; Akbar, M.; Javaid, N.; Bouk, S.H.; Ilahi, M.; Khan, R.D. Advanced LEACH: A Static Clustering-based Heteroneous Routing Protocol for WSNs. J. Basic. Appl. Sci. Res. 2013, 3, 864–872. [Google Scholar]
- Singal, G.; Laxmi, V.; Gaur, M.; Todi, S.; Rao, V.; Tripathi, M.; Kushwaha, R. Multi-constraints link stable multicast routing protocol in MANETs. Ad Hoc Netw. 2017, 63, 115–128. [Google Scholar] [CrossRef]
- Tyagi, P.; Dembla, D. Performance analysis and implementation of proposed mechanism for detection and prevention of security attacks in routing protocols of vehicular ad-hoc network (VANET). Egypt. Inf. J. 2017, 18, 133–139. [Google Scholar] [CrossRef]
- AL-Dhief, F.T.; Sabri, N.; Fouad, S.; Latiff, N.A.; Albader, M.A.A. A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. J. King Saud Univ. Comput. Inf. Sci. 2017. [Google Scholar] [CrossRef]
- Mandhare, V.; Thool, V.; Manthalkar, R. QoS Routing enhancement using metaheuristic approach in mobile ad-hoc network. Comput. Netw. 2016, 110, 180–191. [Google Scholar] [CrossRef]
Dimension x | Dimension y | |
---|---|---|
node 1 | 54 | 93 |
node 2 | 80 | 55 |
node 3 | 96 | 86 |
node 4 | 74 | 77 |
node 5 | 42 | 68 |
node 6 | 22 | 45 |
node 7 | 11 | 53 |
node 8 | 27 | 75 |
node 9 | 64 | 29 |
node 10 | 81 | 63 |
Parameters | Values |
---|---|
Protocols | LEACH, LEACH-C and H-kdtree |
Initial energy | 0.5 J |
50 nJ/bit | |
0.0013 pJ/b/m | |
10 pJ/bit/m | |
Data aggregation | 5 nJ/bit/signal |
Message size | 4000 bits |
Additional energy | |
Heterogeneity | |
CH probability | , |
Scene | Random, Deterministic |
Number of nodes | 200 |
Position node sink/BS | (50, 150) |
Type of traffic | UDP |
Protocol | LEACH (r) | LEACH-C (r) | b | LEACH (d) | LEACH-C (d) | H-kdtree (d) |
---|---|---|---|---|---|---|
Min | 17 | 15 | 23 | 21 | 12 | 20 |
Q1 | 24 | 28 | 23 | 27 | 24 | 20 |
Average | 28.01 | 34.15 | 24.03 | 30.22 | 31.69 | 21.78 |
Q3 | 32 | 40 | 30 | 34 | 39 | 23 |
Max | 36 | 68 | 30 | 40 | 74 | 25 |
Normalized average | 1 | 1.2192 | 0.8579 | 1.0789 | 1.1313 | 0.7775 |
Variance | 37.2625 | 34.8312 | 2.9384 | 33.7894 | 39.7114 | 5.3248 |
Protocol | LEACH (r) | LEACH-C (r) | H-kdtree (r) | LEACH (d) | LEACH-C (d) | H-kdtree (d) |
---|---|---|---|---|---|---|
Min | 0.03918 | 0.08321 | 0.04041 | 0.04849 | 0.07806 | 0.04343 |
Q1 | 0.05265 | 0.09902 | 0.06184 | 0.06551 | 0.09443 | 0.05878 |
Average | 0.07959 | 0.11681 | 0.09122 | 0.09061 | 0.11377 | 0.0851 |
Q3 | 0.112 | 0.1343 | 0.12 | 0.1188 | 0.13331 | 0.1157 |
Max | 0.1416 | 0.15162 | 0.142 | 0.1339 | 0.1623 | 0.1414 |
Normalized average | 1 | 1.4676 | 1.1461 | 1.1384 | 1.4294 | 1.0692 |
Variance | 0.001139 | 0.000406 | 0.001115 | 0.000951 | 0.000487 | 0.001042 |
Protocol | LEACH (r) | LEACH-C (r) | H-kdtree (r) | LEACH (d) | LEACH-C (d) | H-kdtree (d) |
---|---|---|---|---|---|---|
Min | 0 | 0 | 0 | 0 | 0 | 0 |
Q1 | 1.941 | 0 | 0 | 0 | 0 | 0 |
Average | 27.06 | 13.96 | 9.7799 | 13.52 | 6.91 | 10.38 |
Q3 | 48.29 | 25 | 10.012 | 22.5 | 12.5 | 16 |
Max | 76 | 68 | 78 | 44 | 33 | 27 |
Normalized average | 1 | 0.5158 | 0.3614 | 0.4996 | 0.2553 | 0.3835 |
Variance | 677.3701 | 401.614 | 368.7591 | 232.9591 | 106.38 | 120.3591 |
Protocol | LEACH (r) | LEACH-C (r) | H-kdtree (r) | LEACH (d) | LEACH-C (d) | H-kdtree (d) |
---|---|---|---|---|---|---|
Min | 0.1568 | 0.077 | 0.02986 | 0.13 | 0.039 | 0.01 |
Q1 | 0.4328 | 0.573 | 0.09687 | 0.4273 | 0.5565 | 0.02026 |
Average | 0.928 | 0.8758 | 0.114 | 0.8495 | 0.9068 | 0.04285 |
Q3 | 1.324 | 1.1715 | 0.1392 | 1.236 | 1.3115 | 0.04935 |
Max | 1.588 | 1.56 | 0.1411 | 1.546 | 1.669 | 0.1094 |
Normalized average | 1 | 0.94375 | 0.1228 | 0.9154 | 0.9771 | 0.0461 |
Variance | 0.251437 | 0.16277 | 0.000960 | 0.218075 | 0.21478 | 0.000851 |
Protocol | LEACH (r) | LEACH-C (r) | H-kdtree (r) | LEACH (d) | LEACH-C (d) | H-kdtree (d) |
---|---|---|---|---|---|---|
Min | 7.478 | 6.88 | 4.611 | 7.652 | 6.04 | 4.988 |
Q1 | 11.47 | 21.3 | 4.611 | 8.928 | 48.12 | 4.988 |
Average | 20.5 | 40.61 | 4.815 | 21.46 | 33.77 | 5.25 |
Q3 | 22.07 | 57.88 | 5.05 | 25.64 | 48.12 | 5.53 |
Max | 55.46 | 87.03 | 5.05 | 61.5 | 79.84 | 5.635 |
Normalized average | 1 | 1.9809 | 0.2348 | 0.10468 | 1.6473 | 0.25609 |
Variance | 0.2185 | 0.55136 | 0.00003998 | 0.4729 | 0.35932 | 0.00006838 |
Protocol | LEACH (r) | LEACH-C (r) | H-kdtree (r) | LEACH (d) | LEACH-C (d) | H-kdtree (d) |
---|---|---|---|---|---|---|
Min | 22,630 | 20,267 | 140,400 | 12,060 | 5096 | 133,200 |
Q1 | 66,410 | 65,741 | 145,900 | 40,210 | 49,350 | 135,100 |
Average | 97,940 | 107,854 | 145,900 | 104,300 | 101,705 | 136,500 |
Q3 | 131,900 | 149,547 | 150,300 | 154,400 | 149,510 | 137,600 |
Max | 178,200 | 190,903 | 150,300 | 172,200 | 192,501 | 141,500 |
Normalized average | 1 | 1.0122 | 1.4896 | 1.0649 | 1.0384 | 1.3937 |
Variance | 2154.20 | 2285.91 | 9.49 | 3502.15 | 3346.94 | 12.3741 |
Protocol | LEACH (r) | LEACH-C (r) | H-kdtree (r) | LEACH (d) | LEACH-C (d) | H-kdtree (d) |
---|---|---|---|---|---|---|
FND | 24 | 47 | 38 | 37 | 51 | 35 |
HND | 113 | 99 | 94 | 122 | 103 | 96 |
LND | 134 | 164 | 131 | 144 | 180 | 140 |
Number of Nodes | LEACH (r) | LEACH-C (r) | H-kdtree (r) | |
---|---|---|---|---|
100 | Average | 29.34 | 13.703 | 28.16 |
Variance | 42.4871 | 34.0309 | 4.7477 | |
200 | Average | 28.01 | 34.15 | 24.03 |
Variance | 37.2625 | 34.8312 | 2.9384 | |
300 | Average | 24.80 | 43.4356 | 32.43 |
Variance | 39.3804 | 48.0083 | 6.4618 | |
400 | Average | 34.11 | 39.5644 | 32.67 |
Variance | 46.3957 | 39.7683 | 5.6382 |
Number of Nodes | LEACH (r) | LEACH-C (r) | H-kdtree (r) |
---|---|---|---|
100 | 0.06682 | 0.0901 | 0.07915 |
200 | 0.07959 | 0.11681 | 0.09122 |
300 | 0.08839 | 0.1217 | 0.09623 |
400 | 0.09272 | 0.1433 | 0.1062 |
Number of Nodes | LEACH (r) | LEACH-C (r) | H-kdtree (r) |
---|---|---|---|
100 | 12.35 | 5.3465 | 6.39 |
200 | 27.06 | 13.96 | 9.77 |
300 | 43.08 | 21.9604 | 32.83 |
400 | 64.72 | 33.521 | 58.91 |
Number of Nodes | LEACH (r) | LEACH-C (r) | H-kdtree (r) |
---|---|---|---|
100 | 0.283324844 | 0.8021 | 0.10480334 |
200 | 0.928 | 0.8758 | 0.114 |
300 | 0.841188642 | 0.6348 | 0.177976 |
400 | 0.6150795862 | 0.9217 | 0.104979 |
Number of Nodes | LEACH (r) | LEACH-C (r) | H-kdtree (r) |
---|---|---|---|
100 | 0.0200929664 | 0.2216 | 0.00499735 |
200 | 0.0205 | 0.04061 | 0.004815 |
300 | 0.0227276422 | 0.03975 | 0.00462749 |
400 | 0.0200274796 | 0.2368 | 0.00552575 |
Number of Nodes | LEACH (r) | LEACH-C (r) | H-kdtree (r) |
---|---|---|---|
100 | 96,134 | 101,319 | 135,210 |
200 | 97,940 | 107,854 | 145,900 |
300 | 102,603 | 110,623 | 163,092 |
400 | 90,956 | 96,521 | 170,688 |
Number of Nodes | LEACH (r) | LEACH-C (r) | H-kdtree (r) | |
---|---|---|---|---|
FND | 26 | 36 | 30 | |
100 | HND | 121 | 88 | 83 |
LND | 147 | 184 | 127 | |
FND | 24 | 47 | 38 | |
200 | HND | 113 | 99 | 94 |
LND | 134 | 164 | 131 | |
FND | 39 | 71 | 45 | |
300 | HND | 119 | 117 | 89 |
LND | 152 | 174 | 149 | |
FND | 52 | 115 | 37 | |
400 | HND | 137 | 154 | 101 |
LND | 164 | 223 | 152 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anzola, J.; Pascual, J.; Tarazona, G.; González Crespo, R. A Clustering WSN Routing Protocol Based on k-d Tree Algorithm. Sensors 2018, 18, 2899. https://doi.org/10.3390/s18092899
Anzola J, Pascual J, Tarazona G, González Crespo R. A Clustering WSN Routing Protocol Based on k-d Tree Algorithm. Sensors. 2018; 18(9):2899. https://doi.org/10.3390/s18092899
Chicago/Turabian StyleAnzola, John, Jordán Pascual, Giovanny Tarazona, and Rubén González Crespo. 2018. "A Clustering WSN Routing Protocol Based on k-d Tree Algorithm" Sensors 18, no. 9: 2899. https://doi.org/10.3390/s18092899