Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination
<p>Effect of <span class="html-italic">Microbotryum silybum</span> infection. Section of a flowerhead produced by a healthy <span class="html-italic">Silybum marianum</span> plant (<b>a</b>) vs. a flowerhead produced by an infected <span class="html-italic">S. marianum</span> plant (<b>b</b>). The shape of the infected flowerhead is obviously stunted and the black color on the inside is caused by the teliospores of <span class="html-italic">M. silybum</span>.</p> "> Figure 2
<p>Study Area. The location of the <span class="html-italic">S. marianum</span> experimental set-up is depicted in the red rectangle.</p> "> Figure 3
<p>Mean second derivatives of spectra of diseased and healthy <span class="html-italic">S. marianum</span>.</p> "> Figure 4
<p>Accuracy of multilayer perceptron/automatic relevance determination (MLP-ARD) classification. In this figure, both user’s and producer’s accuracy percentages are depicted, with the orange color for healthy and green for infected <span class="html-italic">S. marianum</span> plants. The overall accuracy percentage is depicted in blue.</p> "> Figure 5
<p>Hinton diagram of the trained MLP-ARD algorithm. The X-axis represents the hidden neurons and the Y-axis represents the input features.</p> "> Figure 6
<p>The 1–10 alpha hyperparameters are illustrated.</p> "> Figure 7
<p>Principal components 1–9. The values of the two principal components obtained for the 207 spectral signatures.</p> "> Figure 8
<p>Reflectance curves. The average of the reflectance values acquired from the infected <span class="html-italic">S. marianum</span> plants is depicted with a solid black line, and the average of the reflectance values acquired from the healthy <span class="html-italic">S. marianum</span> plants is depicted with a dotted blue line. The horizontal axis represents the wavelength regions, and the vertical axis represents the reflectance values.</p> ">
Abstract
:1. Introduction
1.1. Weed Infestations
1.2. Silybum marianum
1.3. Fungi as Bioherbicides
1.4. Neural Networks and Disease Recognition—MLP-ARD
1.5. Scope
2. Materials and Methods
2.1. Study Area
2.2. Plant Material Establishment
2.3. Data Acquisition
2.4. Data Analysis
2.5. MLP-ARD Classifier
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gressel, J.; LeBaron, H.M. Herbicide Resistance in Plants; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Kropff, M.J.; Spitters, C.J.T. A simple model of crop loss by weed competition from early observations on relative leaf area of the weeds. Weed Res. 1991, 31, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Mamolos, A.P.; Kalburtji, K.L. Competition between Canada thistle and winter wheat. Weed Sci. 2001, 49, 755–759. [Google Scholar] [CrossRef]
- Darwent, L.; Stevenson, D.; Gamache, P. Canada Thistle and Perennial Sow-Thistle Control in Direct Seeding Systems. Available online: www.agric.gov.ab.ca (accessed on 1 October 2006).
- Donald, W.W.; Khan, M. Canada thistle (Cirsium arvense) effects on yield components of spring wheat (Triticum aestivum). Weed Sci. 1996, 44, 114–121. [Google Scholar]
- Moore, J.W.; Murray, D.S.; Westerman, R.B. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum. Weed Technol. 2004, 18, 23–29. [Google Scholar] [CrossRef]
- Tamouridou, A.A.; Alexandridis, T.K.; Pantazi, X.E.; Lagopodi, A.L.; Kashefi, J.; Moshou, D. Evaluation of UAV imagery for mapping Silybum marianum weed patches. Int. J. Remote Sens. 2017, 38, 2246–2259. [Google Scholar] [CrossRef]
- Khan, M.A.; Marwat, K.B. Impact of crop and weed densities on competition between wheat and Silybum marianum Gaertn. Pak. J. Bot. 2006, 38, 1205. [Google Scholar]
- Parsons, W.T.; Cuthbertson, E.G. Noxious Weeds of Australia; CSIRO publishing: Melbourne, Australia, 2001. [Google Scholar]
- Connor, H.E. The Poisonous Plants in New Zealand; E.C. Keating, Government Printer: Wellington, New Zealand, 1977.
- Goeden, R.D. The phytophagous insect fauna of milk thistle in southern California. J. Econ. Entomol. 1971, 64, 1101–1104. [Google Scholar] [CrossRef]
- Trujillo, E.E.; DelFosse, E.S. Biological Control of Hamakua Pa-Makani with Cercosporella sp. in Hawaii. In Proceedings of the VI International Symposium on Biological Control of Weeds, Vancouver, BC, Canada, 19–25 August 1984. [Google Scholar]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 251–262. [Google Scholar]
- Caesar, A.J. Insect-pathogen synergisms are the foundation of weed biocontrol. In Proceedings of the X International Symposium on Biological Control of Weeds, Bozeman, MT, USA, 4–14 July 1999. [Google Scholar]
- Ghosheh, H.Z. Constraints in implementing biological weed control: A review. Weed Biol. Manag. 2005, 5, 83–92. [Google Scholar] [CrossRef]
- Vánky, K.; Berner, D. Microbotryum silybum sp. nov. (Microbotryales). Mycotaxon 2003, 85, 307–311. [Google Scholar]
- Herrmann, I.; Vosberg, S.K.; Ravindran, P.; Singh, A.; Chang, H.-X.; Chilvers, M.I.; Conley, S.P.; Townsend, P.A. Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden Death Syndrome) in Soybean. Remote Sens. 2018, 10, 426. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Córcoles, J.I.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013, 115, 31–42. [Google Scholar] [CrossRef]
- Kavzoglu, T. Increasing the accuracy of neural network classification using refined training data. Environ. Model. Softw. 2009, 24, 850–858. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Gulhane, V.A.; Gurjar, A.A. Detection of diseases on cotton leaves and its possible diagnosis. Int. J. Image Proc. 2011, 5, 590–598. [Google Scholar]
- Patil, J.K.; Kumar, R. Color feature extraction of tomato leaf diseases. Int. J. Eng. Trends Technol. 2011, 2, 72–74. [Google Scholar]
- Chaudhary, P.; Chaudhari, A.K.; Cheeran, A.N.; Godara, S. Color transform based approach for disease spot detection on plant leaf. Int. J. Comput. Sci. Telecommun. 2012, 3, 65–70. [Google Scholar]
- Pixia, D.; Xiangdong, W. Recognition of greenhouse cucumber disease based on image processing technology. Open J. Appl. Sci. 2013, 3, 27. [Google Scholar] [CrossRef]
- Kulkarni, A.H.; Patil, R.A. Applying image processing technique to detect plant diseases. Int. J. Mod. Eng. Res. 2012, 2, 3661–3664. [Google Scholar]
- Pantazi, X.E.; Moshou, D.; Oberti, R.; West, J.; Mouazen, A.M.; Bochtis, D. Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers. Precis. Agric. 2017, 18, 383–393. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Vianna, G.; Cunha, G.; Oliveira, G. A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves. Int. J. Comput. Electr. Autom. Control Inf. Eng. 2016, 11, 18–24. [Google Scholar]
- Pantazi, X.E.; Tamouridou, A.A.; Alexandridis, T.K.; Lagopodi, A.L.; Kontouris, G.; Moshou, D. Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy. Comput. Electron. Agric. 2017, 137, 130–137. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Anderson, T.W. An Introduction to Multivariate Statistical Analysis, 2nd ed.; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Stoyanova, R.; Brown, T.R. NMR spectral quantitation by principal component analysis. NMR Biomed. 2001, 14, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Lorenzen, B.; Jensen, A. Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sens. Environ. 1989, 27, 201–209. [Google Scholar] [CrossRef]
- Ausmus, B.S.; Hilty, J.W. Reflectance studies of healthy, maize dwarf mosaic virus infected, and Helminthosporium maydis-infected corn leaves. Remote Sens. Environ. 1971, 2, 77–81. [Google Scholar] [CrossRef]
- Malthus, T.J.; Madeira, A.C. High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sens. Environ. 1993, 45, 107–116. [Google Scholar] [CrossRef]
- Nilsson, M.; Elmqvist, T.; Carlsson, U. Use of near-infrared reflectance spectrometry and multivariate data analysis to detect anther smut disease (Microbotryum violaceum) in Silene dioica. Phytopathology 1994, 84, 764–770. [Google Scholar] [CrossRef]
- Monaco, T.J.; Weller, S.C.; Ashton, F.M. Weed Science: Principles and Practices, 4th ed.; Wiley: New York, NY, USA, 2002. [Google Scholar]
Network Prediction (Estimated Class) | ||
---|---|---|
Actual Observations (Ground Truth) | Samples from Diseased Plants | Samples from Healthy Plants |
Infected | 28 | 2 |
Healthy | 4 | 28 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamouridou, A.A.; Pantazi, X.E.; Alexandridis, T.; Lagopodi, A.; Kontouris, G.; Moshou, D. Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination. Sensors 2018, 18, 2770. https://doi.org/10.3390/s18092770
Tamouridou AA, Pantazi XE, Alexandridis T, Lagopodi A, Kontouris G, Moshou D. Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination. Sensors. 2018; 18(9):2770. https://doi.org/10.3390/s18092770
Chicago/Turabian StyleTamouridou, Afroditi Alexandra, Xanthoula Eirini Pantazi, Thomas Alexandridis, Anastasia Lagopodi, Giorgos Kontouris, and Dimitrios Moshou. 2018. "Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination" Sensors 18, no. 9: 2770. https://doi.org/10.3390/s18092770
APA StyleTamouridou, A. A., Pantazi, X. E., Alexandridis, T., Lagopodi, A., Kontouris, G., & Moshou, D. (2018). Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination. Sensors, 18(9), 2770. https://doi.org/10.3390/s18092770