High-Performance Limiting Current Oxygen Sensor Comprised of Highly Active La0.75Sr0.25Cr0.5Mn0.5O3 Electrode
<p>Schematic diagram of limiting current oxygen sensor.</p> "> Figure 2
<p>X-ray diffraction (XRD) patterns of the La<sub>0.75</sub>Sr<sub>0.25</sub>Cr<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>3</sub> (LSCM) powders calcined at the temperature of 1100–1400 °C.</p> "> Figure 3
<p>Scanning electron microscopy (SEM) images of (<b>a</b>) LSCM powder calcined at 1100 °C; (<b>b</b>) Micro-structure of LSCM electrode after 1400 °C co-firing with 8YSZ; (<b>c</b>) Diffusion barrier of sensor; and, (<b>d</b>) Energy Disperse Spectroscopy (EDS) image at line scan mode.</p> "> Figure 4
<p>EIS of C-LSCM and C-Pt tested at (<b>a</b>) 420 °C and (<b>b</b>) 580 °C; and, (<b>c</b>) The relationship between area resistance and operating temperature of C-LSCM and C-Pt.</p> "> Figure 5
<p>Current-voltage characteristic curves of (<b>a</b>) S-LSCM and (<b>b</b>) S-Pt, measured at 580 °C, with the oxygen concentration in the range of 2–30%.</p> "> Figure 6
<p>(<b>a</b>) Response transient and (<b>b</b>) Dependency of the response signal on the oxygen concentration in the range of 2–25% for the sensors comprised of LSCM or Pt electrode; (<b>c</b>) Selectivity of the S-LSCM and S-Pt against 5% CO<sub>2</sub> and H<sub>2</sub>O, at the operational temperature of 580 °C.</p> "> Figure 6 Cont.
<p>(<b>a</b>) Response transient and (<b>b</b>) Dependency of the response signal on the oxygen concentration in the range of 2–25% for the sensors comprised of LSCM or Pt electrode; (<b>c</b>) Selectivity of the S-LSCM and S-Pt against 5% CO<sub>2</sub> and H<sub>2</sub>O, at the operational temperature of 580 °C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powders Preparation
2.2. Samples Fabrication
- (1)
- The Al2O3 ink was screen printed on the right top of an 8YSZ green tape as insulting layer.
- (2)
- The electrode inks (LSCM or Pt-7850) were screen-printing on the top and button of the green tape’s right side as electrode.
- (3)
- Pt-7851 was printed as Pt leader and connect pads, as shown in Figure 1c.
- (4)
- The carbon ink was printed on the button of them, which will be burned out during sintering. A small hole will be produced and it will be used as diffusion barrier. At the same time, a chamber is fabricated around the inner electrode.
- (5)
- Six layers of 8YSZ tape were laminated on the bottom as substrate to get enough mechanical strength. The final cross section of sensor is shown in Figure 1b.
- (6)
- The cells and sensors were both isotactic pressed at 80 °C and 60 Mpa in water, followed by sintering at 1400 °C for 4 h.
2.3. Evaluation of the Electrochemical Activity
2.4. Evaluation of the Sensing Performance
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- B Petroleum. BP Statistical Review of World Energy. 2017. Available online: https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf (accessed on 13 June 2017).
- B Petroleum. BP Energy Outlook. 2018. Available online: https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf (accessed on 20 February 2018).
- Liu, Y.X.; Parisi, J.; Sun, X.C.; Lei, Y. Solid-State Gas sensors for high temperature applications—A review. J. Mater. Chem. A 2014, 26, 9919–9943. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.G.; Tang, Z.Y.; Wang, J.; Yu, J.; Tang, Z.A. Potentiometric hydrogen sensors based on yttria-stabilized zirconia electrolyte (YSZ) and CdWO4 interface. Sens. Actuators B 2015, 223, 365–371. [Google Scholar] [CrossRef]
- Liu, F.M.; Wang, B.; Yang, X.; Guan, Y.H.; Wang, Q.J.; Liang, X.S.; Sun, P.; Wang, Y.; Lu, G.Y. High-temperature NO2 gas sensor based on stabilized zirconia and CoTa2O6 sensing electrode. Sens. Actuators B 2017, 240, 148–157. [Google Scholar] [CrossRef]
- Moos, R.; Sahner, K.; Fleischer, M.; Guth, U.; Barsan, N.; Weimar, U. Solid state gas sensor research in Germany—A status report. Sensors 2009, 9, 4323–4365. [Google Scholar] [CrossRef] [PubMed]
- Han, J.X.; Zhou, F.; Bao, J.X.; Wang, X.J.; Song, X.W. A high performance limiting current oxygen sensor with Ce0.8Sm0.2O1.9 electrolyte and La0.8Sr0.2Co0.8Fe0.2O3 diffusion barrier. Electrochim. Acta 2013, 108, 763–768. [Google Scholar] [CrossRef]
- Itoh, T.; Matsubara, I.; Kadosaki, M.; Sakai, Y.; Shin, W.; Izu, N.; Nishibori, M. Effects of high-humidity aging on platinum, palladium, and gold loaded tin oxide—Volatile organic compound sensors. Sensors 2010, 10, 6513–6521. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Xiao, J.Z.; Xia, F.; Yang, Y. Preparation and characterization of zirconia oxygen sensors. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2007, 22, 612–616. [Google Scholar] [CrossRef]
- Wang, X.G.; Liu, T.; Yu, J.K.; Mo, Y.C.; Yi, M.Y.; Li, J.Y.; Li, L. Preparation and electrical property of CaZr0.7M0.3O3 (M = Fe, Cr and Co) dense diffusion barrier for application in limiting current oxygen sensor. Sens. Actuators B 2018, 266, 455–462. [Google Scholar] [CrossRef]
- Akasaka, S. Thin film YSZ-based limiting current-type oxygen and humidity sensor on thermally oxidized silicon substrates. Sens. Actuators B 2016, 236, 499–505. [Google Scholar] [CrossRef]
- Rossella, F.; Galinetto, P.; Samoggia, G.; Trepakovb, V.; Jastrabik, L. Photoconductivity and the structural phase transition in SrTiO3. Solid State Commun. 2007, 2, 95–98. [Google Scholar] [CrossRef]
- Chow, C.L.; Huang, H.; Wan, C.A.; Liu, H.; Huang, Y.Z.; Tse, M.S.; Tan, O.K. Effect of annealing temperature on the crystallization and oxygen sensing property of strontium titanate ferrite sol-gel thin films. Sens. Actuators B 2013, 187, 20–26. [Google Scholar] [CrossRef]
- Chanquía, C.M.; Vega-Castillo, J.E.; Soldati, A.L.; Troiani, H.; Caneriro, A. Synthesis and characterization of pure-phase La0.75Sr0.25Cr0.5Mn0.5O3-δnanocrystallites for solid oxide fuel cell applications. J. Nanopart. Res. 2012, 14, 1104–1117. [Google Scholar] [CrossRef]
- Barison, S.; Fabrizio, M.; Mortalò, C.; Antonucci, P.; Modafferi, V.; Gerbasi, R. Novel Ru/La0.75Sr0.25Cr0.5Mn0.5O3-δ catalysts for propane reforming in IT-SOFCs. Solid State Ionics 2010, 181, 285–291. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Q.; Tan, W. Synthesis and electrochemical behavior of ceria-substitution LSCM as possible symmetric solid oxide fuel cell electrode material exposed to H2 fuel containing H2S. Int. J. Hydrog. Energy 2014, 39, 13694–13700. [Google Scholar] [CrossRef]
- Zou, J.; Zheng, Y.G.; Li, J.L.; Zhan, Z.L.; Jian, J.W. Potentiometric NO2 Sensors Based on thin stabilized zirconia electrolytes and asymmetric (La0.8Sr0.2)0.95MnO3 electrodes. Sensor 2015, 15, 17558–17571. [Google Scholar] [CrossRef] [PubMed]
- Dierickx, S.; Joos, J.; Weber, A.; Ivers-Tiffee, E. Advanced impedance modeling of Ni/8YSZ cermet anodes. Electrochim. Acta 2018, 265, 736–750. [Google Scholar] [CrossRef]
- Baqúe, L.C.; Jørgensen, P.S.; Zhang, W.; Hansen, K.V.; Søgaard, M. Effect of agingon the electrochemical performance of LSM-YSZ cathodes. J. Electrochem. Soc. 2015, 162, F971–F981. [Google Scholar] [CrossRef] [Green Version]
- Myung, J.H.; Ko, H.J.; Park, H.G.; Hwan, M.; Hyun, S.H. Fabrication and characterization of planar-type SOFC unit cells using the tape-casting/lamination/co-firing method. Int. J. Hydrog. Energy 2012, 37, 498–504. [Google Scholar] [CrossRef]
- Park, C.O.; Akbar, S.A.; Weppner, W. Ceramic electrolytes and electrochemical sensors. J. Mater. Sci. 2003, 38, 4639–4660. [Google Scholar] [CrossRef]
- Lu, C.C.; Huang, Y.S.; Huang, J.W.; Chang, C.K.; Wu, S.P. A macroporousTiO2 oxygen sensor fabricated using anodic aluminiumoxide as an etching mask. Sensors 2010, 10, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Iio, A.; Anggraini, S.A.; Miura, N. Impedancemetric YSZ-based oxygen sensor using BaFeO3 sensingelectrode. Sens. Actuators B 2017, 243, 279–282. [Google Scholar] [CrossRef]
Sensing Materials | Operating Mode | Concentration Range | Operating Temperature | Reference |
---|---|---|---|---|
Pt | Amperometric/potentiometric | 0–21% | Above 350 °C | [6,7] |
BaFeO3 | Impedancemetric | 0.2–21% | 600 °C | [23] |
SrTi0.6Fe0.4O3−δ | Conductometric | 1–100% | 400–750 °C | [13] |
TiO2 | 0.05–2.5% | Below 500 °C | [22] | |
CaZr0.7Mn0.3O3 | Amperometric | 0–21% | 650–830 °C | [10] |
La0.75Sr0.25Cr0.5Mn0.5O3 | 2–25% | Above 350 °C | This research |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Lin, Q.; Cheng, C.; Zhang, X.; Jin, Q.; Jin, H.; Wang, J.; Jian, J. High-Performance Limiting Current Oxygen Sensor Comprised of Highly Active La0.75Sr0.25Cr0.5Mn0.5O3 Electrode. Sensors 2018, 18, 2155. https://doi.org/10.3390/s18072155
Zou J, Lin Q, Cheng C, Zhang X, Jin Q, Jin H, Wang J, Jian J. High-Performance Limiting Current Oxygen Sensor Comprised of Highly Active La0.75Sr0.25Cr0.5Mn0.5O3 Electrode. Sensors. 2018; 18(7):2155. https://doi.org/10.3390/s18072155
Chicago/Turabian StyleZou, Jie, Qian Lin, Chu Cheng, Xin Zhang, Qinghui Jin, Han Jin, Jinxia Wang, and Jiawen Jian. 2018. "High-Performance Limiting Current Oxygen Sensor Comprised of Highly Active La0.75Sr0.25Cr0.5Mn0.5O3 Electrode" Sensors 18, no. 7: 2155. https://doi.org/10.3390/s18072155
APA StyleZou, J., Lin, Q., Cheng, C., Zhang, X., Jin, Q., Jin, H., Wang, J., & Jian, J. (2018). High-Performance Limiting Current Oxygen Sensor Comprised of Highly Active La0.75Sr0.25Cr0.5Mn0.5O3 Electrode. Sensors, 18(7), 2155. https://doi.org/10.3390/s18072155