Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation
<p>Low-<math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> approximation. Dashed blue lines with dots: Four experimental runs. Thick black line: <math display="inline"> <semantics> <msubsup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <msqrt> <mrow> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> </mrow> </msqrt> </mrow> <msub> <mi>σ</mi> <mi>R</mi> </msub> </mfrac> <mo stretchy="false">)</mo> </mrow> <mrow> <mo>,</mo> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> </mrow> </msubsup> </semantics> </math> where <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mi>σ</mi> <mrow> <mi>Q</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>01</mn> <mo>,</mo> <msubsup> <mi>σ</mi> <mrow> <mi>R</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>f</mi> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics> </math></p> "> Figure 2
<p>Typical-<math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> approximation. Dashed blue lines/dots: many runs. Thick black line: <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math><math display="inline"> <semantics> <msup> <mrow> <mi>h</mi> <mo>)</mo> </mrow> <mrow> <mi>T</mi> <msub> <mrow/> <mi>d</mi> </msub> <mo>/</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> </mrow> </msup> </semantics> </math>, where <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math> is given by (<a href="#FD6-sensors-18-01947" class="html-disp-formula">6</a>), <math display="inline"> <semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>Q</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>R</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>h</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> (<b>a</b>) five runs; (<b>b</b>) 100 runs displayed without connecting lines.</p> "> Figure 3
<p>Approximation with a velocity component. Dashed blue lines/dots: One run. Thick black line: <math display="inline"> <semantics> <mrow> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>K</mi> <mi>H</mi> <mo>)</mo> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mo>Δ</mo> <mi>T</mi> </mrow> </msup> <mi>K</mi> </mrow> </semantics> </math>, where <span class="html-italic">K</span> is found by solving the DARE. <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <mi>T</mi> </mrow> </semantics> </math> = 1/5, <span class="html-italic">Q</span> = 0.01<math display="inline"> <semantics> <mfenced separators="" open="[" close="]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </semantics> </math>, <span class="html-italic">R</span> = 1, <span class="html-italic">H</span> = [1 0], <math display="inline"> <semantics> <mrow> <mi>F</mi> <mo>=</mo> <mfenced separators="" open="[" close="]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>Δ</mo> <mi>T</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </semantics> </math> (<b>a</b>) position; (<b>b</b>) velocity.</p> "> Figure 4
<p>Performance of selective out-of-sequence filters as a function of the cut-off time <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </semantics> </math>. The vertical line represents the theoretical cut-off <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics> </math> computed using (<a href="#FD8-sensors-18-01947" class="html-disp-formula">8</a>) with a <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>/</mo> <mi>k</mi> </mrow> </semantics> </math> value of 0.6. (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>75</mn> </mrow> </semantics> </math>. In all runs, <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 5
<p>Performance of selective out-of-sequence filters as a function of the cut-off time <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </semantics> </math> for a wide range of <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> </semantics> </math> viewing a narrow time-scale. The vertical line represents the theoretical cut-off <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics> </math> computed using (<a href="#FD8-sensors-18-01947" class="html-disp-formula">8</a>) with a <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>/</mo> <mi>k</mi> </mrow> </semantics> </math> value of 0.6. (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>500</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>. In all runs, <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Performance of selective out-of-sequence filters as a function of the cut-off time <math display="inline"> <semantics> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </semantics> </math> for a wide range of <math display="inline"> <semantics> <mrow> <mo>Δ</mo> <msub> <mi>T</mi> <mi>D</mi> </msub> </mrow> </semantics> </math> viewing a narrow time-scale. The vertical line represents the theoretical cut-off <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics> </math> computed using (<a href="#FD8-sensors-18-01947" class="html-disp-formula">8</a>) with a <math display="inline"> <semantics> <mrow> <msub> <mi>k</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>/</mo> <mi>k</mi> </mrow> </semantics> </math> value of 0.6. (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>5</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>Q</mi> </msub> <mo>=</mo> <mn>500</mn> <mo>,</mo> <msub> <mi>σ</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>. In all runs, <math display="inline"> <semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>Δ</mo> <msub> <mi>T</mi> <mi>P</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>2</mn> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Arrowhead Path with random walk tracker.</p> "> Figure 8
<p>Performance of selective out-of-sequence filters for Arrowhead Path.</p> "> Figure 9
<p>Performance of SAl1 filter compared with Al1 filter.</p> "> Figure 10
<p>Performance of Extended Kalman fileter. (<b>a</b>) (RMSE) between the true paths and estimated trajectories with respect to the maximum delay; (<b>b</b>) Computational time with repect to the maximum delay. The gray bands indicate 1 standard deviation from the mean.</p> ">
Abstract
:1. Introduction
1.1. Prior Work
1.2. Problem Statement
1.3. Contributions
- We propose using the gain given by a simple optimal OOS filter to the delayed observation to estimate the merit of a past observation.
- For the case where the maneuverability index is very low , this gain is proportional to .
- We propose that observations where the ratio of the merit to a new observation is below a fixed threshold be dropped. For a very low maneuverability target moving according to a random walk, this merit leads to a threshold of , that is, a threshold that increases linearly with the mean sampling rate and decreases linearly with the maneuverability of the target.
- Through synthetic simulations, we demonstrate that the proposed technique provides a good estimate of when observations no longer have merit across the full practical spectrum of the maneuverability index.
1.4. Assumptions
2. The Delayed Kalman Gain
2.1. Preliminaries
2.2. The Output of the Kalman Filter as Weighted Sum of Observations
2.3. Steady-State Kalman Gain
2.4. Exponential Behavior of the Time Delayed Gain
2.5. Scalar Case
2.6. Discrete White-Noise Acceleration (DWNA) Case
3. Numerical Validation
Algorithm 1 Computation of ideal Kalman filter gains on Poisson-distributed sequence. The gains do not depend on the actual measurements, so there is no need to include them in the calculations. |
for j from 1 to n end |
4. Simulations and Discussion
4.1. Nearly-Constant Position (Random Walk)
Algorithm 2 A selective filter uses an existing out-of-sequence filter to incorporate observations that are newer than a fixed threshold. |
field field field function init(): = end function update(,): if : .update(, ) = end end |
4.2. Arrowhead Path
4.3. Extension to Nonlinear Filter
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kim, S.H.; Choi, H.L. An Out-of-sequence Measurement Fusion Method for Guidance Filtering with Delayed Measurements. Int. J. Control Autom. Syst. 2018, 16, 512–521. [Google Scholar] [CrossRef]
- Wang, X.; Qin, W.; Bai, Y.; Cui, N. Cooperative target localization using multiple UAVs with out-of-sequence measurements. Aircraft Eng. Aerosp. Technol. 2017, 89, 112–119. [Google Scholar] [CrossRef]
- Liu, C.; Eben, L.; Yang, D.; Hedrick, K. Distributed Bayesian Filter Using Measurement Dissemination for Multiple Unmanned Ground Vehicles With Dynamically Changing Interaction Topologies. J. Dyn. Syst. Meas. Control 2017, 140, 030903. [Google Scholar] [CrossRef]
- Ohno, Y.; Uozumi, S.; Ohnishi, K. Compensation of out-of-order delivery using Kalman Filter for teleoperation system. In Proceedings of the 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC), Yokohama, Japan, 14–16 March 2014; pp. 488–493. [Google Scholar] [CrossRef]
- Chen, Z.; Feng, X.; Zhou, F. Extended Kalman filter for networked control systems based on measurements summation. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 4542–4547. [Google Scholar] [CrossRef]
- Zhang, K.; Rong Li, X.; Zhu, Y. Optimal update with out-of-sequence measurements. IEEE Trans. Signal Process. 2005, 53, 1992–2004. [Google Scholar] [CrossRef]
- Alexander, H.L. State estimation for distributed systems with sensing delay. In SPIE Proceedings of Data Structures and Target Classification, Orlando, FL, USA, 1 April 1991; International Society for Optics and Photonics: Bellingham, WA, USA, 1991; Volume 1470, pp. 103–111. [Google Scholar]
- Larsen, T.; Andersen, N.; Ravn, O.; Poulsen, N. Incorporation of time delayed measurements in a discrete-time Kalman filter. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, 18 December 1998; Volume 4, pp. 3972–3977. [Google Scholar]
- Bar-Shalom, Y. Update with out-of-sequence measurements in tracking: Exact solution. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 769–777. [Google Scholar] [CrossRef]
- Zhang, S.; Bar-Shalom, Y. Optimal Update with Multiple Out-of-Sequence Measurements with Arbitrary Arriving Order. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3116–3132. [Google Scholar] [CrossRef]
- Van der Merwe, R. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. Ph.D. Thesis, Oregon Health & Science University, Portland, OR, USA, 2004. [Google Scholar]
- Xu, S.; Doğançay, K.; Hmam, H. 3D AOA target tracking using distributed sensors with multi-hop information sharing. Signal Process. 2018, 144, 192–200. [Google Scholar] [CrossRef]
- Liu, L.; Yang, A.; Zhou, W.; Tao, Q.; Tu, X.; Yue, J. Filtering for Stochastic Systems with Transmission Delays and Out-of-Order Packets. Intelligent Computing, Networked Control, and Their Engineering Applications; Yue, D., Peng, C., Du, D., Zhang, T., Zheng, M., Han, Q., Eds.; Springer: Singapore, 2017; pp. 497–506. [Google Scholar]
- Singh, A.K.; Date, P.; Bhaumik, S. A Modified Bayesian Filter for Randomly Delayed Measurements. IEEE Trans. Autom. Control 2017, 62, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Tasoulis, D.K.; Adams, N.M.; Hand, D.J. Selective fusion of out-of-sequence measurements. Inf. Fusion 2010, 11, 183–191. [Google Scholar] [CrossRef]
- Zhou, H.; Deng, Z.; Xia, Y.; Fu, M. Update with Out-of-Sequence Measurements. Nurocomputing 2016, 214, 212–125. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Mu, D.; Guo, L. Random Time Delay Effect on Out-of-Sequence Measurements. IEEE Access 2016, 4, 7509–7518. [Google Scholar] [CrossRef] [Green Version]
- Kalata, P.R. The tracking index: A generalized parameter for α-β and α-β-γ target trackers. IEEE Trans. Aerosp. Electron. Syst. 1984, 20, 174–181. [Google Scholar] [CrossRef]
- Chen, H.; Kirubarajan, T.; Bar-Shalom, Y. Performance Limits of Track-to-Track Fusion versus Centralized Estimation: Theory and Application. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 386–400. [Google Scholar] [CrossRef]
- Oreshkin, B.N.; Liu, X.; Coates, M.J. Efficient delay-tolerant particle filtering. IEEE Trans. Signal Process. 2011, 59, 3369–3381. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Thoery, Algorithms, and Software; Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Kojima, C.; Takaba, K.; Kaneko, O.; Rapisarda, P. A characterization of solutions of the discrete-time algebraic Riccati equation based on quadratic difference forms. Linear Algebra Its Appl. 2006, 416, 1060–1082. [Google Scholar] [CrossRef]
- Rojas, A.J. On the Discrete-Time Algebraic Riccati Equation and Its Solution in Closed-Form. IFAC Proc. Vol. 2011, 44, 162–167. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Chen, H.; Mallick, M. One-step solution for the multistep out-of-sequence-measurement problem in tracking. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 27–37. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoder, J.; Baek, S.; Kwon, H.; Pack, D. Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation. Sensors 2018, 18, 1947. https://doi.org/10.3390/s18061947
Yoder J, Baek S, Kwon H, Pack D. Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation. Sensors. 2018; 18(6):1947. https://doi.org/10.3390/s18061947
Chicago/Turabian StyleYoder, Josiah, Stanley Baek, Hyukseong Kwon, and Daniel Pack. 2018. "Exploring the Exponentially Decaying Merit of an Out-of-Sequence Observation" Sensors 18, no. 6: 1947. https://doi.org/10.3390/s18061947