Temperature Insensitivity Polarization-Controlled Orbital Angular Momentum Mode Converter Based on an LPFG Induced in Four-Mode Fiber
<p>(<b>a</b>) Schematic diagram of the CO<sub>2</sub> laser system employed to induce long-period fiber grating (LPFG) in 4MF; (<b>b</b>) Transmission spectrum evolution of a CO<sub>2</sub>-laser-induced LPFG with the scanning cycle (K) increases from 1 to 5.</p> "> Figure 2
<p>Measured transmission spectrum of the polarization-dependent loss (PDL) for the LPFG.</p> "> Figure 3
<p>(<b>a</b>) Calculated effective refractive indices plotted as a function of wavelength for the LP<sub>01</sub>, LP<sub>11</sub>, LP<sub>21</sub>, and LP<sub>02</sub> modes; (<b>b</b>) The transmission spectra of four CO<sub>2</sub>-laser-induced LPFGs with grating pitches of 1190, 1200, 1210, and 1220 μm.</p> "> Figure 4
<p>(<b>a</b>) Experimental configuration used to detect orbital angular momentum (OAM) modes generated by the CO<sub>2</sub>-laser-induced LPFG; (<b>b</b>) (b<sub>11</sub>–b<sub>13</sub>) An experimentally generated vector mode with phase delays of +π/2, 0, and −π/2 and test results are using the same sample with a grating pitch of 1200 µm at 1588.1 nm. (b<sub>21</sub>–b<sub>23</sub>) OAM interference patterns with topological charges of l = +1, l = 0, and l = −1, respectively.</p> "> Figure 5
<p>Experiment setup for testing the temperature response of the LPFG.</p> "> Figure 6
<p>(<b>a</b>) Transmission spectra evolution of the 4FM-LPFG with the temperature increased from 30 °C to 100 °C in steps of 10 °C; (<b>b</b>) Relationship between the resonant wavelength and the temperature.</p> "> Figure 7
<p>(<b>a</b>) Beam profiles and interference patterns of OAM modes generated by the LPFG as the temperature increased from 23 °C to 50 °C; (<b>b</b>) The intensity (a. u.), calculated by MATLAB, changed with the temperature increasing from 23 °C to 50 °C.</p> ">
Abstract
:1. Introduction
2. Fabrication and Characterization of the FM-LPFG
3. Experiment Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Leach, J.; Jack, B.; Romero, J.; Jha, A.K.; Yao, A.M.; Frankearnold, S.; Ireland, D.G.; Boyd, R.W.; Barnett, S.M.; Padgett, M.J. Quantum correlations in optical angle-orbital angular momentum variables. Science 2010, 329, 662. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013, 340, 1545. [Google Scholar] [CrossRef] [PubMed]
- Franke-Arnold, S.; Allen, L.; Padgett, M. Advances in optical angular momentum. Laser Photon. Rev. 2008, 2, 299–313. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Courtial, J.; Padgett, M.J. Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes. Opt. Commun. 1999, 159, 13–18. [Google Scholar] [CrossRef]
- Berkhout, G.C.; Lavery, M.P.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 2010, 105, 153601. [Google Scholar] [CrossRef] [PubMed]
- Ngcobo, S.; Litvin, I.; Burger, L.; Forbes, A. A digital laser for on-demand laser modes. Nat. Commun. 2013, 4, 2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photon. 2016, 10, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Mo, Q.; Hu, X.; Du, C.; Wang, J. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett. 2015, 40, 4376–4379. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, L.; Wu, H.; Gao, S.; Feng, Y.-H.; Li, Z. Superposing Multiple LP Modes with Microphase Difference Distributed along Fiber to Generate OAM Mode. IEEE Photon. J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, K.; Huang, L.; Mao, D.; Jiang, B.; Gao, F.; Zhang, G.; Mei, T.; Zhao, J. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Opt. Express 2016, 24, 19278–19285. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Liu, S.; Bai, Z.; He, J.; Liao, C.; Wang, Y.; Li, Z.; Zhang, Y.; Yang, K.; Yu, B. Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen-oxygen flame. J. Lightwave Technol. 2018. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Z.; Liu, Y.G.; Han, T.; Li, S.; Wei, H. Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers. Opt. Express 2011, 19, 17344–17349. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.J.; Wang, Y.P.; Ran, Z.L.; Zhu, T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightwave Technol. 2003, 21, 1320–1327. [Google Scholar] [CrossRef]
- Rao, Y.J.; Zhu, T.; Ran, Z.L.; Wang, Y.P.; Jiang, J.; Hu, A.Z. Novel long-period fiber gratings written by high-frequency CO2 laser pulses and applications in optical fiber communication. Opt. Commun. 2004, 229, 209–221. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wang, D.N.; Jin, W.; Rao, Y.J.; Peng, G.D. Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 2006, 89, 151105. [Google Scholar] [CrossRef]
- Sun, Z.L.; Liu, Y.G.; Wang, Z.; Tai, B.Y.; Han, T.T.; Liu, B.; Cui, W.T.; Wei, H.F.; Tong, W.J. Long period grating assistant photonic crystal fiber modal interferometer. Opt. Express 2011, 19, 12913–12918. [Google Scholar] [CrossRef] [PubMed]
- Ung, B.; Vaity, P.; Wang, L.; Messaddeq, Y.; Rusch, L.A.; Larochelle, S. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Opt. Express 2014, 22, 18044–18055. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhu, L.; Wang, L.; Ai, J.; Chen, S.; Wang, J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express 2018, 26, 10038–10047. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Gao, F.; Zhao, J.; Wei, K.; Huang, L.; Mei, T.; Zhang, W. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions. Opt. Express 2017, 25, 2733–2741. [Google Scholar] [CrossRef]
- Jiang, Y.; Ren, G.; Li, H.; Tang, M.; Liu, Y.; Wu, Y.; Jian, W.; Jian, S. Linearly polarized orbital angular momentum mode purity measurement in optical fibers. Appl. Opt. 2017, 56, 1990–1995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Wang, D.N.; Jin, W. CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation. Appl. Opt. 2006, 45, 7966–7970. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhang, Y.; Fu, C.; Bai, Z.; Li, Z.; Liao, C.; Wang, Y.; He, J.; Liu, Y.; Wang, Y. Temperature Insensitivity Polarization-Controlled Orbital Angular Momentum Mode Converter Based on an LPFG Induced in Four-Mode Fiber. Sensors 2018, 18, 1766. https://doi.org/10.3390/s18061766
Liu S, Zhang Y, Fu C, Bai Z, Li Z, Liao C, Wang Y, He J, Liu Y, Wang Y. Temperature Insensitivity Polarization-Controlled Orbital Angular Momentum Mode Converter Based on an LPFG Induced in Four-Mode Fiber. Sensors. 2018; 18(6):1766. https://doi.org/10.3390/s18061766
Chicago/Turabian StyleLiu, Shen, Yan Zhang, Cailing Fu, Zhiyong Bai, Ziliang Li, Changrui Liao, Ying Wang, Jun He, Yu Liu, and Yiping Wang. 2018. "Temperature Insensitivity Polarization-Controlled Orbital Angular Momentum Mode Converter Based on an LPFG Induced in Four-Mode Fiber" Sensors 18, no. 6: 1766. https://doi.org/10.3390/s18061766
APA StyleLiu, S., Zhang, Y., Fu, C., Bai, Z., Li, Z., Liao, C., Wang, Y., He, J., Liu, Y., & Wang, Y. (2018). Temperature Insensitivity Polarization-Controlled Orbital Angular Momentum Mode Converter Based on an LPFG Induced in Four-Mode Fiber. Sensors, 18(6), 1766. https://doi.org/10.3390/s18061766