A Service-Oriented Middleware for Integrated Management of Crowdsourced and Sensor Data Streams in Disaster Management †
<p>Use Cases Diagram—Middleware requirements.</p> "> Figure 2
<p>AGORA-DSM architecture.</p> "> Figure 3
<p>Interactions between Sensors, SM, BM and StrM arranged in time sequence.</p> "> Figure 4
<p>BM: Application, EM, Publish/Subscribe and SOS.</p> "> Figure 5
<p>Interactions arranged in time sequence. (<b>a</b>) StrM and BM workflow; (<b>b</b>) Application, EM and StrM workflow.</p> "> Figure 6
<p>Filtering sensors using time as a parameter.</p> "> Figure 7
<p>Filtering sensors using a bounding box as a paramater.</p> "> Figure 8
<p>Filtering sensors using the property they provide.</p> "> Figure 9
<p>Scenario 01—Processing Time. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 10
<p>Scenario 02—Processing Time. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 11
<p>Scenario 03—Processing Time. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 12
<p>Scenario 04—Processing Time. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 13
<p>Resource Management. (<b>a</b>) Scenario 01; (<b>b</b>) Scenario 02; (<b>c</b>) Scenario 03; (<b>d</b>) Scenario 04.</p> "> Figure 14
<p>Scenario 01—Time Frequency. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 15
<p>Scenario 02—Time Frequency. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 16
<p>Scenario 03—Time Frequency. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 17
<p>Scenario 04—Time Frequency. (<b>a</b>) Stations in the whole country of Brazil; (<b>b</b>) Stations grouped by states.</p> "> Figure 18
<p>Flood Citizen Observatory.</p> "> Figure 19
<p>Citizens’ Observations Heatmap.</p> "> Figure 20
<p>Citizen Observations Description and Category Synthesis. (<b>a</b>) Citizen Observations Description WordCloud; (<b>b</b>) Citizen Observations Category WordCloud.</p> "> Figure 21
<p>Spark Append Mode.</p> "> Figure 22
<p>SOS repository. (<b>a</b>) Procedure table; (<b>b</b>) Observation table.</p> "> Figure 23
<p>Prototyping Web App—Filtering Capabilities Parameters. (<b>a</b>) Spatial Parameters; (<b>b</b>) Temporal Parameters; (<b>c</b>) Thematic Parameters.</p> "> Figure 24
<p>Prototyping Web App—Result Filtering Capabilities.</p> "> Figure 25
<p>Brazilian scenarios of flash floods.</p> ">
Abstract
:1. Introduction
- Service-Oriented Middleware. The design, implementation, and evaluation of a service-oriented middleware for heterogeneous geosensor data to support on-the-fly access, near-real-time publication, and event filtering capabilities.
- Joining batch and streaming processing. The pairing of batch and stream platforms to manage geosensors in dynamic scenarios, using generic, open and reusable components under the Sensor Web standards, and a general streaming engine for big data processing.
- Case study. The leassons learned from the real-world application of flood risk management in Brazil.
2. Related Works
3. Middleware Requirements for Dynamic Scenarios
4. AGORA—DSM
4.1. Adapters
4.2. Sensor Management (SM)
4.2.1. Sensor Registration
4.2.2. Observation Publication
4.2.3. Sensor Updating
4.3. Batch Management (BM)
4.4. Stream Management (StrM)
4.5. Event Management (EM)
4.5.1. Filtering Capabilities
4.5.2. Event Notification
5. Experimental Evaluation
5.1. Study case: Flash floods in Brazil
5.2. Experimental Setup Scenarios
5.3. Performance Efficiency of Sensor Management
5.3.1. Time Behaviour and Scalability
5.3.2. Resource Utilization
5.3.3. Requests Time Frequency
5.3.4. Payload Size
5.3.5. Interoperability Analytics Testing of a Flood Citizen Observatory
5.4. Analysis of Batch and Stream Management Integration
5.5. Event Awareness by Sensor Data Filtering
6. Discussions
6.1. Service-Oriented Middleware
6.2. Joining Batch and Stream Processing
6.3. Leassons Learned from Flood Risk Management
7. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Horita, F.E.; de Albuquerque, J.P.; Marchezini, V. Understanding the decision-making process in disaster risk monitoring and early-warning: A case study within a control room in Brazil. Int. J. Disaster Risk Reduct. 2018, 28, 22–31. [Google Scholar] [CrossRef]
- Mostert, E.; Junier, S. The European flood risk directive: Challenges for research. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 4961–4988. [Google Scholar] [CrossRef]
- Valavanis, K.P. Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy; Springer: Berlin, Germany, 2008. [Google Scholar]
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [Google Scholar] [CrossRef]
- Horita, F.E.; de Albuquerque, J.P.; Degrossi, L.C.; Mendiondo, E.M.; Ueyama, J. Development of a spatial decision support system for flood risk management in Brazil that combines volunteered geographic information with wireless sensor networks. Comput. Geosci. 2015, 80, 84–94. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. Geo J. 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Resch, B. People as sensors and collective sensing-contextual observations complementing geo-sensor network measurements. In Progress in Location-Based Services; Krisp, J.M., Ed.; Springer: Berlin, Germany, 2013; pp. 391–406. [Google Scholar]
- Sagl, G.; Resch, B.; Blaschke, T. Contextual sensing: Integrating contextual information with human and technical geo-sensor information for smart cities. Sensors 2015, 15, 17013–17035. [Google Scholar] [CrossRef] [PubMed]
- Resch, B.; Blaschke, T. Fusing human and technical sensor data: Concepts and challenges. SIGSPATIAL Spec. 2015, 7, 29–35. [Google Scholar] [CrossRef]
- Assis, L.F.F.G.; de Albuquerque, J.P.; Herfort, B.; Steiger, E.; Horita, F.E.A. Geographical prioritization of social network messages in near real-time using sensor data streams: An application to floods. Braz. Cartogr. J. 2016, 68, 1231–1240. [Google Scholar]
- De Albuquerque, J.P.; Herfort, B.; Brenning, A.; Zipf, A. A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management. Int. J. Geogr. Inf. Sci. 2015, 29, 667–689. [Google Scholar] [CrossRef]
- Schnebele, E.; Cervone, G.; Waters, N. Road assessment after flood events using non-authoritative data. Nat. Hazards Earth Syst. Sci. 2014, 14, 1007–1015. [Google Scholar] [CrossRef]
- Beder, D.M.; Ueyama, J.; de Albuquerque, J.P.; Chaim, M.L. FlexFT: A Generic Framework for Developing Fault-Tolerant Applications in the Sensor Web. Int. J. Distrib. Sens. Netw. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Di, L.; Yu, G.; Zhang, B. Implementation of sensor observation service for satellite imagery sensors. In Proceedings of the 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; pp. 1–5. [Google Scholar]
- Coulson, G.; Blair, G.; Grace, P.; Taiani, F.; Joolia, A.; Lee, K.; Ueyama, J.; Sivaharan, T. A generic component model for building systems software. ACM Trans. Comput. Syst. 2008, 26, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Walter, K.; Nash, E. Coupling Wireless Sensor Networks and the Sensor Observation Service—Bridging the Interoperability Gap. In Proceedings of the 12th AGILE International Conference on Geographic Information Science (AGILE), Chicago, IL, USA, 2–5 June 2009; pp. 1–9. [Google Scholar]
- Liang, S.H.; Huang, C.Y. Geocens: A geospatial cyberinfrastructure for the world-wide sensor web. Sensors 2013, 13, 13402–13424. [Google Scholar] [CrossRef] [PubMed]
- Reed, C.; Buehler, K.; McKee, L. OGC consensus: How successful standards are made. ISPRS Int. J. Geo-Inf. 2015, 4, 1693–1706. [Google Scholar] [CrossRef]
- Percivall, G.; Idol, T.; Alameh, N.; Harrison, J. Innovation in OGC: The Interoperability Program. ISPRS Int. J. Geo-Inf. 2015, 4, 2362–2378. [Google Scholar] [CrossRef]
- Martínez, E.; Toma, D.M.; Jirka, S.; Del Río, J. Middleware for Plug and Play Integration of Heterogeneous Sensor Resources into the Sensor Web. Sensors 2017, 17, 2923. [Google Scholar] [CrossRef] [PubMed]
- Assis, L.F.F.G.; Behnck, L.P.; Doering, D.; de Freitas, E.P.; Pereira, C.E.; Horita, F.E.A.; Ueyama, J.; De Albuquerque, J.P. Dynamic sensor management: Extending sensor web for near real-time mobile sensor integration in dynamic scenarios. In Proceedings of the 30th International Conference on Advanced Information Networking and Applications (AINA), Crans-Montana, Switzerland, 23–25 March 2016; pp. 303–310. [Google Scholar] [CrossRef]
- Akyildiz, I.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- Lewis, F.L. Wireless Sensor Networks; Technical Report; The University of Texas at Arlington: Arlington, TX, USA, 2004. [Google Scholar] [CrossRef]
- Maini, A.K.; Agrawal, V. Remote Sensing Satellites. In Satellite Technology: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 343–390. [Google Scholar]
- Kramer, H.J.; Cracknell, A.P. An overview of small satellites in remote sensing. Int. J. Remote Sens. 2008, 29, 4285–4337. [Google Scholar] [CrossRef]
- Delin, K.A.; Jackson, S.P. The Sensor Web: A New Instrument Concept. In Proceedings of the Symposium on Integrated Optics, San Jose, CA, USA, 15 May 2001; pp. 20–26. [Google Scholar] [CrossRef]
- Delin, K.A. The Sensor Web: A Macro-Instrument for Coordinated Sensing. Sensors 2002, 2, 270–285. [Google Scholar] [CrossRef]
- Delin, K.A. Sensor Webs in the Wild. In Wireless Sensor Networks: A Systems Perspective; Bulusu, N., Jha, S., Eds.; Artech House: Norwood, MA, USA, 2005; pp. 1–16. [Google Scholar]
- Torres-Martinez, E.; Schoeberl, M.; Kalb, M.W. A web of sensors: Enabling the earth science vision. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002; pp. 351–353. [Google Scholar] [CrossRef]
- Heinzelman, W.; Murphy, A. Middleware to support sensor network applications. IEEE Netw. 2004, 18, 6–14. [Google Scholar] [CrossRef]
- Wang, M.M.; Cao, J.N.; Li, J.; Dasi, S.K. Middleware for wireless sensor networks: A survey. J. Comput. Sci. Technol. 2008, 23, 305–326. [Google Scholar] [CrossRef]
- Hadim, S.; Mohamed, N. Middleware: Middleware Challenges and Approaches for Wireless Sensor Networks. IEEE Distrib. Syst. Online 2006, 7, 1. [Google Scholar] [CrossRef]
- Sgroi, M.; Wolisz, A.; Sangiovanni-Vincentelli, A.; Rabaey, J.M. A service-based universal application interface for ad-hoc wireless sensor networks. In Ambient Intelligence; Springer: Berlin, Germany, 2004. [Google Scholar]
- Aberer, K.; Hauswirth, M.; Salehi, A. Middleware Support for the “Internet of Things”; Technical Report 5005; 5. GI/ITG KuVS Fachgespräch "Drahtlose Sensornetze"; University of Stuttgart: Stuttgart, Germany, 2006. [Google Scholar]
- Bruneton, E.; Coupaye, T.; Leclercq, M.; Quéma, V.; Stefani, J.B. The fractal component model and its support in java. Softw.-Pract. Exp. 2006, 36, 1257–1284. [Google Scholar] [CrossRef]
- Costa, P.; Coulson, G.; Gold, R.; Lad, M.; Mascolo, C.; Mottola, L.; Picco, G.P.; Sivaharan, T.; Weerasinghe, N.; Zachariadis, S. The RUNES middleware for networked embedded systems and its application in a disaster management scenario. In Proceedings of the 5th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), White Plains, NY, USA, 19–23 March 2007; pp. 69–78. [Google Scholar]
- Porter, B.; Coulson, G. Lorien: A pure dynamic component-based operating system for wireless sensor networks. In Proceedings of the 4th International Workshop on Middleware Tools, Services and Run-Time Support for Sensor Networks, Champaign, IL, USA, 30 November–4 December 2009; pp. 7–12. [Google Scholar]
- Levis, P.; Culler, D. Maté: A Tiny Virtual Machine for Sensor Networks. In Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems, San Jose, CA, USA, 6–10 October 2002; pp. 85–95. [Google Scholar]
- Barr, R.; Bicket, J.C.; Dantas, D.S.; Du, B.; Kim, T.W.D.; Zhou, B.; Sirer, E.G. On the need for system-level support for ad hoc and sensor networks. ACM SIGOPS Oper. Syst. Rev. 2002, 36, 1–5. [Google Scholar] [CrossRef]
- Abdelzaher, T.; Blum, B.; Cao, Q.; Chen, Y.; Evans, D.; George, J.; George, S.; Gu, L.; He, T.; Krishnamurthy, S.; et al. EnviroTrack: Towards an environmental computing paradigm for distributed sensor networks. In Proceedings of the 24th International Conference on Distributed Computing Systems, Tokyo, Japan, 26 March 2004; pp. 582–589. [Google Scholar] [CrossRef]
- Liu, T.; Martonosi, M. Impala: A middleware system for managing autonomic, parallel sensor systems. In Proceedings of the Ninth ACM SIGPLAN symposium on Principles and practice of parallel programming, San Diego, CA, USA, 11–13 June 2003; Volume 38, pp. 107–118. [Google Scholar]
- Srisathapornphat, C.; Jaikaeo, C.; Shen, C.C. Sensor Information Networking Architecture. In Proceedings of the International Workshop on Parallel Processing, Toronto, ON, Canada, 21–24 August 2000; pp. 23–30. [Google Scholar] [CrossRef]
- Yu, X.; Niyogi, K.; Mehrotra, S.; Venkatasubramanian, N. Adaptive Middleware for Distributed Sensor Environments. IEEE Distrib. Syst. Online 2003, 4. [Google Scholar] [CrossRef]
- Trevathan, J.; Atkinson, I.; Read, W.; Johnstone, R.; Bajema, N.; McGeachin, J. Establishing low cost aquatic monitoring networks for developing countries. In Communications: Wireless in Developing Countries and Networks of the Future; Springer: Berlin, Germany, 2010; pp. 39–50. [Google Scholar]
- Botts, M.; Percivall, G.; Reed, C.; Davidson, J. OGC® Sensor Web Enablement : Overview And High Level Architecture. In Proceedings of the AUTOTESTCON, Open Geospatial Consortium, Baltimore, MD, USA, 17–20 September 2007; pp. 372–380. [Google Scholar]
- Wang, Y.; He, Y.; Gong, J.; Sheng, J. A Framework of Spatial Sensor Web. In Proceedings of the 3rd International Conference on Signal-Image Technologies and Internet-Based System (SITIS), Shanghai, China, 16–18 December 2007; pp. 148–155. [Google Scholar]
- Zeeb, E.; Behnke, R.; Hess, C.; Timmermann, D.; Golatowski, F.; Thurow, K. Generic sensor network gateway architecture for plug and play data management in smart laboratory environments. In Proceedings of the IEEE Conference on Emerging Technologies & Factory Automation (ETFA), Mallorca, Spain, 22–25 September 2009; pp. 1–8. [Google Scholar]
- Abangar, H.; Barnaghi, P.; Moessner, K.; Nnaemego, A. A Service Oriented Middleware Architecture for Wireless Sensor Networks. In Proceedings of the 2010 Conference Future Network & MobileSummit, Florence, Italy, 16–18 June 2010; pp. 1–10. [Google Scholar]
- Panangadan, A.; Monacos, S.; Burleigh, S.; Joswig, J.; James, M.; Chow, E.; Talukder, A.; Chu, K.D. A system to provide real-time collaborative situational awareness by web enabling a distributed sensor network. In Proceedings of the 1st ACM SIGSPATIAL Workshop on Sensor Web Enablement, Redondo Beach, CA, USA, 7–9 November 2012; pp. 24–31. [Google Scholar]
- Geipel, J.; Jackenkroll, M.; Weis, M.; Claupein, W. A Sensor Web-Enabled Infrastructure for Precision Farming. ISPRS Int. J. Geo-Inf. 2015, 4, 385–399. [Google Scholar] [CrossRef]
- Bröring, A.; Foerster, T.; Jirka, S.; Priess, C. Sensor bus: An intermediary layer for linking geosensors and the sensor web. In Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research & Application, Washington, DC, USA, 23–25 May 2010; pp. 1–12. [Google Scholar] [CrossRef]
- Bröring, A.; Maué, P.; Janowicz, K.; Nüst, D.; Malewski, C. Semantically-enabled sensor plug & play for the sensor web. Sensors 2011, 11, 7568–7605. [Google Scholar] [CrossRef] [PubMed]
- Malewski, C.; Bröring, A.; Maué, P.; Janowicz, K. Semantic matchmaking & mediation for sensors on the sensor web. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 929–934. [Google Scholar] [CrossRef]
- Díaz, L.; Bröring, A.; McInerney, D.; Libertá, G.; Foerster, T. Publishing sensor observations into Geospatial Information Infrastructures: A use case in fire danger assessment. Environ. Model. Softw. 2013, 48, 65–80. [Google Scholar] [CrossRef]
- Foerster, T.; Daniel, N.; Bröring, A.; Jirka, S. Discovering the sensor web through mobile applications. In Proceedings of the 8th International Symposium on Location-based Services, Vienna, Switzerland, 21–23 November 20112; pp. 211–224. [Google Scholar]
- Hu, C.; Guan, Q.; Chen, N.; Li, J.; Zhong, X.; Han, Y. An observation capability metadata model for EO sensor discovery in sensor web enablement environments. Remote Sens. 2014, 6, 10546–10570. [Google Scholar] [CrossRef]
- Lee, Y.J.; Trevathan, J.; Atkinson, I.; Read, W. The Integration, Analysis and Visualization of Sensor Data from Dispersed Wireless Sensor Network Systems Using the SWE Framework. J. Telecommun. Inf. Technol. 2015, 4, 86. [Google Scholar]
- Li, S.; Lin, Y.; Son, S.H.; Stankovic, J.A.; Wei, Y. Event detection services using data service middleware in distributed sensor networks. Telecommun. Syst. 2004, 26, 351–368. [Google Scholar] [CrossRef]
- Schaeffer, B.; Baranski, B.; Foerster, T.; Brauner, J. A service-oriented framework for real-time and distributed geoprocessing. In Geospatial Free and Open Source Software in the 21st Century; Springer: Berlin, Germany, 2012; pp. 3–20. [Google Scholar]
- Bigagli, L.; Rieke, M. The new OGC Publish/Subscribe Standard-applications in the Sensor Web and the Aviation domain. Open Geospat. Data Softw. Stand. 2017, 2, 18. [Google Scholar] [CrossRef]
- Bakillah, M.; Zipf, A.; Liang, S.H. Publish/subscribe system based on event calculus to support real-time multi-agent evacuation simulation. In Geographic Information Science at the Heart of Europe; Vandenbroucke, D., Bucher, B., Crompvoets, J., Eds.; Springer: Berlin, Germany, 2013; pp. 337–352. [Google Scholar]
- Jürrens, E.H.; Bröring, A.; Jirka, S. A human sensor web for water availability monitoring. In Proceedings of the OneSpace, Berlin, Germany, 1 Sebtember 2009. [Google Scholar]
- Mobasheri, A.; Bakillah, M. Towards a unified infrastructure for automated management and integration of heterogeneous Geo-datasets in disaster response. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4570–4573. [Google Scholar]
- Ostermann, F.O.; Spinsanti, L. A Conceptual Workflow for Automatically Assessing the Quality of Volunteered Geographic Information for Crisis Management. In Proceedings of the 14th International Conference on Geographic Information Science (AGILE), Utrecht, The Netherlands, 18–21 March 2011. [Google Scholar]
- Simonovic, S.P. Decision Support System for Flood Management in the Red River Basin. Can. Water Resour. J. 1999, 24, 203–223. [Google Scholar] [CrossRef]
- Assis, L.F.F.G. Service-Oriented Middleware for Dynamic, Real-Time Management of Heterogeneous Geosensors in Flood Management. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2016. [Google Scholar]
- Bröring, A.; Janowicz, K.; Stasch, C.; Kuhn, W. Semantic challenges for sensor plug and play. In Proceedings of the 2009 International Symposium on Web and Wireless Geographical Information Systems (W2GIS), Maynooth, Ireland, 7–8 December 2009; pp. 72–86. [Google Scholar] [CrossRef]
- Bröring, A.; Foerster, T.; Jirka, S. Interaction patterns for bridging the gap between sensor networks and the sensor web. In Proceedings of the 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Mannheim, Germany, 29 March–2 April 2010; pp. 732–737. [Google Scholar] [CrossRef]
- Ciancetta, F.; D’Apice, B.; Gallo, D.; Landi, C. Plug-n-play smart sensor based on web service. IEEE Sens. J. 2007, 7, 882–889. [Google Scholar] [CrossRef]
- Ciancetta, F.; Bucci, G.; Fiorucci, E.; Landi, C. An RFID Plug-n-Play smart sensors for monitoring forest fires. In Proceedings of the IMEKO TC-4 and TC-19 Symposium and IWADC Instrumentation for the ICT Area, Kosice, Slovakia, 8–10 September 2010. [Google Scholar]
- Ciancetta, F.; Member, S.; Apice, B.D.; Gallo, D.; Landi, C. Plug-n-Play Smart Sensor Network with Dynamic Web Service. IEEE Trans. Instrum. Meas. 2008, 57, 2136–2145. [Google Scholar] [CrossRef]
- Ciancetta, F.; Bucci, G.; Fiorucci, E.; Landi, C. A Plug-n-Play wireless sensor network based on Web service for monitoring climatic parameters. In Proceedings of the 2010 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), Taranto, Italy, 6–8 September 2010; pp. 72–76. [Google Scholar]
- Hughes, D.; Thoelen, K.; Horré, W.; Matthys, N.; Cid, J.D.; Michiels, S.; Huygens, C.; Joosen, W. LooCI: A loosely-coupled component infrastructure for networked embedded systems. In Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia, Kuala Lumpur, Malaysia, 14–16 December 2009; pp. 195–203. [Google Scholar]
- Wolff, A.; Michaelis, S.; Schmutzler, J.; Wietfeld, C. Network-centric middleware for service oriented architectures across heterogeneous embedded systems. In Proceedings of the 11th International EDOC Conference Workshop (EDOC), Annapolis, MD, USA, 15–19 October 2007; pp. 105–108. [Google Scholar]
- Hansson, H.; Akerholm, M.; Crnkovic, I.; Torngren, M. SaveCCM-a component model for safety-critical real-time systems. In Proceedings of the 30th Euromicro Conference, Rennes, France, 31 August–3 September 2004; pp. 627–635. [Google Scholar] [CrossRef]
- Degrossi, L.C.; de Albuquerque, J.P.; Fava, M.C.; Mendiondo, E.M. Flood Citizen Observatory: A crowdsourcing-based approach for flood risk management in Brazil. In Proceedings of the 26th International Conference on Software Engineering and Knowledge Engineering (SEKE), Vancouver, BC, Canada, 1–3 July 2014; pp. 570–575. [Google Scholar]
- Degrossi, L.C. Uma abordagem para obtenção e disponibilização em tempo real de informações geográficas voluntárias no contexto de gestão de risco de inundação. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2015. [Google Scholar]
- Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th conference on Networked Systems Design and Implementation, San Jose, CA, USA, 25–27 April 2012; pp. 1–2. [Google Scholar]
- Hughes, D.; Ueyama, J.; Mendiondo, E.; Matthys, N.; Horré, W.; Michiels, S.; Huygens, C.; Joosen, W.; Man, K.L.; Guan, S.U. A middleware platform to support river monitoring using wireless sensor networks. J. Braz. Comput. Soc. 2011, 17, 85–102. [Google Scholar] [CrossRef]
- De León, J.C.V.; Bogardi, J.; Dannenmann, S.; Basher, R. Early warning systems in the context of disaster risk management. Entwickl. Ländlicher Raum 2006, 2, 23–25. [Google Scholar]
- Dolif, G.; Engelbrecht, A.; Jatobá, A.; da Silva, A.J.D.; Gomes, J.O.; Borges, M.R.; Nobre, C.A.; de Carvalho, P.V.R. Resilience and brittleness in the ALERTA RIO system: A field study about the decision-making of forecasters. Nat. Hazards 2013, 65, 1831–1847. [Google Scholar] [CrossRef]
- Horita, F.E.; de Albuquerque, J.P.; Marchezini, V.; Mendiondo, E.M. Bridging the gap between decision-making and emerging big data sources: An application of a model-based framework to disaster management in Brazil. Decis. Support Syst. 2017, 97, 12–22. [Google Scholar] [CrossRef]
- Vieweg, S.; Castillo, C.; Imran, M. Integrating social media communications into the rapid assessment of sudden onset disasters. In Proceedings of the International Conference on Social Informatics (SocInfo), Barcelona, Spain, 11–13 November 2014; pp. 444–461. [Google Scholar] [CrossRef]
- Klug, H.; Kmoch, A. A SMART groundwater portal: An OGC web services orchestration framework for hydrology to improve data access and visualisation in New Zealand. Comput. Geosci. 2014, 69, 78–86. [Google Scholar] [CrossRef]
SWE | Main Functionalities | Research Group—References | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ||
√ | × | × | × | × | × | × | × | × | × | × | × | × | [52,53,68,69] | |
[21,54,55,56,61] | ||||||||||||||
× | × | × | × | × | × | × | [70,71,72,73] | |||||||
× | × | × | × | × | [49] | |||||||||
√ | × | × | × | × | × | × | × | × | × | × | [50] | |||
√ | × | × | × | × | × | × | [45] | |||||||
√ | × | × | × | × | × | × | × | × | × | × | × | [47] | ||
√ | × | × | × | × | × | × | × | × | [48] | |||||
× | × | × | × | × | × | × | × | [16,37,38] | ||||||
√ | × | × | × | × | × | × | × | × | × | × | [18] | |||
√ | × | × | × | × | × | × | × | × | [14] | |||||
× | × | × | × | [74] | ||||||||||
× | × | × | × | × | × | [75] | ||||||||
× | × | × | [76] | |||||||||||
× | × | × | × | × | × | × | × | [36] |
Message | Syntax |
---|---|
Register Sensor | registerSensor*sensorID*observedProperty |
Publish Observation | publishObservation*sensorID*timestamp*location*value |
Start Monitoring | startMonitoring*sensorID*timestamp*location |
Stop Monitoring | stopMonitoring*sensorID*timestamp*location |
Sleep Monitoring | sleepMonitoring*sensorID*timestamp*location |
Wake up Monitoring | wakeUpMonitoring*sensorID*timestamp*location |
Current Position | currentPosition*sensorID*timestamp*location |
Message Protocol | SWE Standard | ||||
---|---|---|---|---|---|
TEXT | JSON | SOAP | |||
Operation | Size | Operation | Size | Operation | Size |
register sensor | 42 | DescribeSensor | 161 | DescribeSensor | 866 |
(registerSensor*sensorID*observerdProperty) | InsertSensor | 4433 | InsertSensor | 8325 | |
publish observation | 60 | GetObservationById | 125 | GetObservationById | 680 |
(PublishObservation*sensorID*timeStamp*location*value) | InsertObservation | 1084 | InsertObservation_Measurement | 2462 | |
stop monitoring | 41 | DescribeSensor | 161 | DescribeSensor | 866 |
(StopMonitoring*sensorID*timeStamp*location) | UpdateSensorDescription | 2922 | UpdateSensorDescription | 4348 | |
start monitoring | 49 | DescribeSensor | 161 | DescribeSensor | 866 |
(StartMonitoring*sensorID*timeStamp*location) | UpdateSensorDescription | 2922 | UpdateSensorDescription | 4348 | |
sleep monitoring | 44 | DescribeSensor | 161 | DescribeSensor | 866 |
(SleepMonitoring*sensorID*timeStamp*location) | UpdateSensorDescription | 2922 | UpdateSensorDescription | 4348 | |
wake up monitoring | 50 | DescribeSensor | 161 | DescribeSensor | 866 |
(WakeUpMonitoring*sensorID*timeStamp*location) | UpdateSensorDescription | 2922 | UpdateSensorDescription | 4348 | |
current position | 49 | DescribeSensor | 161 | DescribeSensor | 866 |
(CurrentPosition*sensorID*timeStamp*location) | UpdateSensorDescription | 2922 | UpdateSensorDescription | 4348 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
F. G. de Assis, L.F.; E. A. Horita, F.; P. de Freitas, E.; Ueyama, J.; De Albuquerque, J.P. A Service-Oriented Middleware for Integrated Management of Crowdsourced and Sensor Data Streams in Disaster Management. Sensors 2018, 18, 1689. https://doi.org/10.3390/s18061689
F. G. de Assis LF, E. A. Horita F, P. de Freitas E, Ueyama J, De Albuquerque JP. A Service-Oriented Middleware for Integrated Management of Crowdsourced and Sensor Data Streams in Disaster Management. Sensors. 2018; 18(6):1689. https://doi.org/10.3390/s18061689
Chicago/Turabian StyleF. G. de Assis, Luiz Fernando, Flávio E. A. Horita, Edison P. de Freitas, Jó Ueyama, and João Porto De Albuquerque. 2018. "A Service-Oriented Middleware for Integrated Management of Crowdsourced and Sensor Data Streams in Disaster Management" Sensors 18, no. 6: 1689. https://doi.org/10.3390/s18061689