Wave Propagation in Aluminum Honeycomb Plate and Debonding Detection Using Scanning Laser Vibrometer
<p>The finite element model of a HSS with a surface-bonded PZT.</p> "> Figure 2
<p>Simulated GW-field of displacement in Z direction: (<b>a</b>) top and front view for 15 kHz excitation at 230 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) top and front view for 35 kHz excitation at 230 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) top and front view for 45 kHz excitation at 120 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>d</b>) top and front view for 80 kHz excitation at 120 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 3
<p>The finite element model of the hexagon surface of honeycomb.</p> "> Figure 4
<p>The excitation signals in the frequency domain.</p> "> Figure 5
<p>The relationship between the SWIs and the honeycomb core displacement in Z direction: (<b>a</b>) back view of the top skin at 45 kHz; (<b>b</b>) the first-order mode shape of the hexagon surface.</p> "> Figure 6
<p>The relationship between the SWIs and the honeycomb core displacement in Z direction: (<b>a</b>) back view of the top skin at 80 kHz; (<b>b</b>) the second-order mode shape of the hexagon surface.</p> "> Figure 7
<p>The SLV tests: (<b>a</b>) the schematic diagram of tests. (<b>b</b>) the experimental figure.</p> "> Figure 8
<p>The wave field measured by SLV at 80<math display="inline"> <semantics> <mrow> <mtext> </mtext> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>: (<b>a</b>) 15 kHz; (<b>b</b>) 45 kHz; (<b>c</b>) 80 kHz.</p> "> Figure 9
<p>Experimental results at the frequency 15 kHz for D2, with two debondings at the locations of (100,100) and (50,164): (<b>a</b>) wave field at 80 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) wave field at 240 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) wave field at 400 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>d</b>) wave field at 560 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 9 Cont.
<p>Experimental results at the frequency 15 kHz for D2, with two debondings at the locations of (100,100) and (50,164): (<b>a</b>) wave field at 80 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) wave field at 240 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) wave field at 400 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>d</b>) wave field at 560 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 10
<p>Experimental results at the frequency 45 kHz for D2 with two debondings at the locations of (100,100) and (50,164): (<b>a</b>) wave field at 20 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) wave field at 160 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) wave field at 300 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>d</b>) wave field at 440 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 10 Cont.
<p>Experimental results at the frequency 45 kHz for D2 with two debondings at the locations of (100,100) and (50,164): (<b>a</b>) wave field at 20 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) wave field at 160 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) wave field at 300 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>d</b>) wave field at 440 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 11
<p>Experimental results at the frequency 80 kHz for D2 with two debondings at the locations of (100,100) and (50,164): (<b>a</b>) wave field at 12 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) wave field at 52 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) wave field at 92 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>d</b>) wave field at 132 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 11 Cont.
<p>Experimental results at the frequency 80 kHz for D2 with two debondings at the locations of (100,100) and (50,164): (<b>a</b>) wave field at 12 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) wave field at 52 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) wave field at 92 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>d</b>) wave field at 132 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 12
<p>Results of debonding detection experiments at different excitation frequencies: (<b>a</b>) 15 kHz at 400 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>b</b>) 45 kHz at 300 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>; (<b>c</b>) 80 kHz at 92 <math display="inline"> <semantics> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">s</mi> </mrow> </semantics> </math>.</p> "> Figure 13
<p>The deformed honeycomb cores during the fabrication.</p> ">
Abstract
:1. Introduction
2. The Selection of Excitation Frequency
3. Experiments in Debonding Detection in HSSs
3.1. SLV Tests Setup
3.2. Sample Preparation
3.3. Experimental Setup
4. Results and Discussion
4.1. The Relationship between Excitation Frequencies and the SWIs
4.2. The Multi-Damage Zones Detection Test
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Staszewski, W.J.; Mahzan, S.; Traynor, R. Health monitoring of aerospace composite structures—Active and passive approach. Compos. Sci. Technol. 2009, 69, 1678–1685. [Google Scholar] [CrossRef]
- Mustapha, S.; Ye, L.; Dong, X.; Alamdari, M.M. Evaluation of barely visible indentation damage (BVID) in CF/EP sandwich composites using guided wave signals. Mech. Syst. Signal Process. 2016, 76–77, 497–517. [Google Scholar] [CrossRef]
- Olympio, K.R.; Gandhi, F. Modeling and Numerical Analyses of Skin Design Concepts. In Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, USA, 4 May 2009. [Google Scholar]
- Fatemi, J.; Lemmen, M. Effective Thermal and Mechanical Properties of Honeycomb Core Panels for Hot Structure Applications. In Proceedings of the 14th AIAA/AHI Space Planes Hypersonic Systems and Technologies Conference, Canberra, Australia, 6–9 November 2006; Volume 46. [Google Scholar]
- Singher, L.; Segal, Y.; Shamir, J. Interaction of a guided wave with a nonuniform adhesion bond. Ultrasonics 1997, 35, 385–391. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Zhu, K.; Fang, D. Calculation of dispersion curves for arbitraty wavenumbers using finite element method. Int. J. Appl. Mech. 2014, 6, 1–12. [Google Scholar] [CrossRef]
- Petculescu, G.; Krishnaswamy, S.; Achenbach, J.D. Group delay measurements using modally selective Lamb wave transducers for detection and sizing of delaminations in composites. Smart Mater. Struct. 2008, 17. [Google Scholar] [CrossRef]
- Thwaites, S.; Clark, N. Non-Destructive Testing of Honeycomb Sandwich Structures Using Elastic Waves. J. Sound Vib. 1995, 187, 253–269. [Google Scholar] [CrossRef]
- Valle, C.; Littles, J.W. Flaw localization using the reassigned spectrogram on laser-generated and detected Lamb modes. Ultrasonics 2002, 39, 535–542. [Google Scholar] [CrossRef]
- Bar-Cohen, Y.; Mal, A.; Chang, Z. Composite material defects characterization using leaky Lamb wave dispersion data. Proc. SPIE Nondestruct. Eval. Mater. Compos. II 1998, 3396, 180–186. [Google Scholar] [CrossRef]
- Ren, B.; Lissenden, C.J. Modal content-based damage indicators for disbonds in adhesively bonded composite structures. Struct. Health Monit. 2016, 15. [Google Scholar] [CrossRef]
- Shen, Y.; Giurgiutiu, V. WaveFormRevealer: An analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage. Struct. Health Monit. 2014, 13, 1–21. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C.E.S. Lamb-Wave Based Structural Health Monitoring; Wiley: Hoboken, NJ, USA, 2005; Volume 1, ISBN 0470869070. [Google Scholar]
- Song, F.; Huang, G.L.; Hu, G.K. Online Guided Wave-Based Debonding Detection in Honeycomb Sandwich Structures. AIAA J. 2012, 50, 284–293. [Google Scholar] [CrossRef]
- Diamanti, K.; Soutis, C.; Hodgkinson, J.M. Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams. Compos. Part A Appl. Sci. Manuf. 2005, 36, 189–195. [Google Scholar] [CrossRef]
- Mustapha, S.; Ye, L.; Wang, D.; Lu, Y. Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency. Compos. Struct. 2011, 93, 483–491. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, Y.; Zhang, H.; Ren, G. Baseline signal reconstruction for temperature compensation in lamb wave-based damage detection. Sensors 2016, 16, 1273. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Rose, J.L.; Xu, C. Ultrasonic Guided Wave Nondestructive Testing for Helicopter Rotor Blades. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008; pp. 1–7. [Google Scholar]
- Mustapha, S.; Ye, L. Leaky and non-leaky behaviours of guided waves in CF/EP sandwich structures. Wave Motion 2014, 51, 905–918. [Google Scholar] [CrossRef]
- Song, F.; Huang, G.L.; Hudson, K. Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system. Smart Mater. Struct. 2009, 18, 125007. [Google Scholar] [CrossRef]
- Mustapha, S.; Ye, L.; Wang, D.; Lu, Y. Debonding Detection in Composite Sandwich Structures Based on Guided Waves. AIAA J. 2012, 50, 1697–1706. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Waves in Solid Media; Cambridge University Press: Cambridge, UK, 1999; Volume 107, ISBN 0521640431. [Google Scholar]
- Banerjee, S.; Pol, C.B. Theoretical modeling of guided wave propagation in a sandwich plate subjected to transient surface excitations. Int. J. Solids Struct. 2012, 49, 3233–3241. [Google Scholar] [CrossRef]
- Osmont, D.; Devillers, D.; Taillade, F. Health monitoring of sandwich plates based on the analysis of the interaction of Lamb waves with damages. Proc. SPIE 2002, 4327, 290–301. [Google Scholar]
- Hosseini, H.; Willberg, C.; Kharaghani, A.; Gabbert, U. Characterization of the guided wave propagation in simplified foam, honeycomb and hollow sphere structures. Compos. Part B Eng. 2014, 56, 553–566. [Google Scholar] [CrossRef]
- Hosseini, H.; Gabbert, U. Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: A parametric study. Compos. Struct. 2013, 97, 189–201. [Google Scholar] [CrossRef]
- Tian, Z.; Yu, L.; Huang, G.; van Tooren, M.; Mitchell, W.; Van Tooren, M.; Mitchell, W. Wavenumber study of guided waves in aluminum honeycomb sandwich structures. Proc. SPIE Smart Struct. Mater. Nondestruct. Eval. Health Monit. 2015, 9438, 943807. [Google Scholar] [CrossRef]
- Li, B.; Ye, L.; Li, Z.; Ma, Z.; Kalhori, H. Quantitative identification of delamination at different interfaces using guided wave signals in composite laminates. J. Reinf. Plast. Compos. 2015, 34, 1506–1525. [Google Scholar] [CrossRef]
- Mizutani, Y.; Yamada, H.; Nishino, H.; Takemoto, M.; Ono, K. Non-contact ultrasonic inspection of skin/core bond in honeycomb with Lamb waves. In Proceedings of the 6th Annual International Symposium on NDE for Health Monitoring and Diagnostics, Newport Beach, CA, USA, 4–8 March 2001; p. 330. [Google Scholar]
- Cosenza, C.; Cerniglia, D.; Djordjevic, B.B. Non-contact Ultrasonic Inspection of Skin/Core Bond in Honeycomb with Lamb Waves. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002. [Google Scholar]
- Maslov, K.; Kinra, V.K. Scanning Laser Vibrometry for Lamb Wave Evaluation of Composite Tubulars. Nondestruct. Test. Eval. 1998, 15, 395–409. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications; Springer: London, UK, 2009; Volume 48, ISBN 9781848827837. [Google Scholar]
- Haque, R.; Ogam, E.; Benaben, P.; Boddaert, X. Inkjet-Printed Membrane for a Capacitive Acoustic Sensor: Development and Characterization Using Laser Vibrometer. Sensors 2017, 17, 1056. [Google Scholar] [CrossRef] [PubMed]
- Köhler, B. Dispersion Relations in Plate Structures Studied with a Scanning Laser Vibrometer. In Proceedings of the 9th European Conference on Non-Destructive Testing, Berlin, Germany, 29 September 2006. [Google Scholar]
Skin Panels | Honeycomb Core | PZT Actuator | |||||
---|---|---|---|---|---|---|---|
Length | Width | Thickness | Cell Size | Wall Thickness | Height | Diameter | Thickness |
290 | 300 | 0.3 | 5 | 0.03 | 19.7 | 10 | 0.3 |
Order | Frequency (kHz) | Order | Frequency (kHz) |
---|---|---|---|
1 | 37.59 | 6 | 186.75 |
2 | 77.06 | 7 | 210.47 |
3 | 124.15 | 8 | 238.09 |
4 | 141.18 | 9 | 289.80 |
5 | 171.13 | 10 | 297.32 |
Sample | Debonding Location (mm) | Debonding Size (mm) |
---|---|---|
Debonding A | (100,100) | 20 |
Debonding B | (50,164) | 26 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, F.; Cao, X.; Li, H. Wave Propagation in Aluminum Honeycomb Plate and Debonding Detection Using Scanning Laser Vibrometer. Sensors 2018, 18, 1669. https://doi.org/10.3390/s18061669
Zhao J, Li F, Cao X, Li H. Wave Propagation in Aluminum Honeycomb Plate and Debonding Detection Using Scanning Laser Vibrometer. Sensors. 2018; 18(6):1669. https://doi.org/10.3390/s18061669
Chicago/Turabian StyleZhao, Jingjing, Fucai Li, Xiao Cao, and Hongguang Li. 2018. "Wave Propagation in Aluminum Honeycomb Plate and Debonding Detection Using Scanning Laser Vibrometer" Sensors 18, no. 6: 1669. https://doi.org/10.3390/s18061669
APA StyleZhao, J., Li, F., Cao, X., & Li, H. (2018). Wave Propagation in Aluminum Honeycomb Plate and Debonding Detection Using Scanning Laser Vibrometer. Sensors, 18(6), 1669. https://doi.org/10.3390/s18061669