A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms
<p>Main steps of the proposed methodology.</p> "> Figure 2
<p>(<b>a</b>) RGB image for organic-beans field; (<b>b</b>) hue image for the same field.</p> "> Figure 3
<p>(<b>a</b>) Hue histogram; (<b>b</b>) the fitted Gaussian curve of the hue histogram.</p> "> Figure 4
<p>RGB images and hue histogram for canola crop at three different growth stages. (<b>a</b>,<b>c</b>,<b>e</b>) represent RGB images at 17, 29, 37 days after plant emerging; (<b>b</b>,<b>d</b>,<b>f</b>) are the hue histogram for these images.</p> "> Figure 5
<p>Location of possible thresholds (marked within ellipses). (<b>a</b>) the case of non-vegetation is the dominant class; (<b>b</b>) the case of vegetation is the dominant class.</p> "> Figure 6
<p>Flowchart for detecting th1 & th2.</p> "> Figure 7
<p>Description for <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Description for <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Description for <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>(<b>a</b>) UAV imagery system from DJI; (<b>b</b>) Inspire 1 drone; (<b>c</b>) X3 RGB camera.</p> "> Figure 11
<p>Binarization accuracies for different confident intervals.</p> "> Figure 12
<p>Achieved accuracy for different modification for <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 13
<p>Achieved accuracy for different modification for <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mn>4</mn> </mrow> </semantics></math>.</p> "> Figure 14
<p>Achieved accuracy for different modification for <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>h</mi> <mo>_</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 15
<p>Generated vegetation binary images from the proposed methodology. Each image is labeled with the image number, while (<b>a</b>) is for the acquired RGB image, and (<b>b</b>) for the generated binary image.</p> "> Figure 15 Cont.
<p>Generated vegetation binary images from the proposed methodology. Each image is labeled with the image number, while (<b>a</b>) is for the acquired RGB image, and (<b>b</b>) for the generated binary image.</p> "> Figure 16
<p>Performance comparison between the proposed methodology and other approaches. Std is represented by error bar.</p> ">
Abstract
:1. Introduction
1.1. Color Index-Based Segmentation
1.2. Threshold Index-Based Segmentation
2. Methodology
2.1. HSV Color Space
2.2. Image Hue Histogram
2.3. Threshold Detection Process
- Case (1): the image has one Gaussian peak and the dominant class is non-vegetation.
- Case (2): the image has one Gaussian peak and the dominant class is vegetation.
- Case (3): the image has more than one Gaussian peak and the dominant class is non-vegetation.
- Case (4): the image has more than one Gaussian peak and the dominant class is vegetation.
2.4. Image Vegetation Binarization
3. Methodology Implementation
4. Experimental Results
5. Results Analysis
5.1. Confidence Interval of the Dominant Gaussian
5.2. Local Minima Searching Limit
5.3. Final Threshold Value
5.4. Proposed Methodology Performance Evaluation
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Swain, K.C.; Jayasuriya, H.P.; Salokhe, V.M. Suitability of low-altitude remote sensing images for estimating nitrogen treatment variations in rice cropping for precision agriculture adoption. J. Appl. Remote Sens. 2007, 1, 1–11. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps 5. Biosyst. Eng. 2012, 114, 358–371. [Google Scholar] [CrossRef]
- Crookston, R.K. A top 10 list of developments and issues impacting crop management and ecology during the past 50 years. Crop Sci. 2006, 46, 2253–2262. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Erickson, B.; Widmar, D.A. Precision Agricultural Services Dealership Survey Results; Purdue Univercity: West Lafayette, IN, USA, 2015. [Google Scholar]
- Stafford, J.V. Implementing Precision Agriculture in the 21st Century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef]
- Burgos-artizzu, X.P.; Ribeiro, A.; Guijarro, M.; Pajares, G. Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 2011, 75, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef] [PubMed]
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A light-weight multispectral sensor for micro uav—Opportunities for very high resolution airborne remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 1193–1200. [Google Scholar]
- Xiang, H.; Tian, L. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 2011, 108, 104–113. [Google Scholar] [CrossRef]
- Hardin, P.J.; Hardin, T.J. Small-scale remotely piloted vehicles in environmental research. Geogr. Compass 2010, 4, 1297–1311. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E., III; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Mccabe, M.F.; Houborg, R.; Rosas, J. The potential of unmanned aerial vehicles for providing information on vegetation health. In Proceedings of the 21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 November–4 December 2015; pp. 1399–1405. [Google Scholar]
- Hassanein, M.; El-sheimy, N. Efficient Weed Detection Using Low-Cost UAV System. In Proceedings of the 10th International Conference for Mobile Mapping Technology, Cairo, Egypt, 6–11 May 2017. [Google Scholar]
- Peña Barragán, J.M.; Torres-Sánchez, J.; Serrano Pérez, A.; Castro, A.I.D.; López Granados, F. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors (Basel) 2015, 15, 5609–5626. [Google Scholar] [CrossRef] [PubMed]
- Comba, L.; Gay, P.; Primicerio, J.; Ricauda Aimonino, D. Vineyard detection from unmanned aerial systems images. Comput. Electron. Agric. 2015, 114, 78–87. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Giles, D.K.; Downey, D. Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 2008, 61, 63–78. [Google Scholar] [CrossRef]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von, K.; Mortensen, D.A. Plant species identification, size, and enumeration using machine vision techniques on near-binary images. Opt. Agric. For. 1993, 1836, 208–219. [Google Scholar]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.W.; Lakshmi, K. Machine vision detection parameters for plant species identification. In Proceedings of the SPIE, Bellingham, WA, USA, 1–6 November 1998. [Google Scholar]
- Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 20–24 July 2003; IEEE: New York, NY, USA, 2003; Volume 2, pp. b1079–b1083. [Google Scholar]
- Meyer, G.E.; Neto, J.C.; Jones, D.D.; Hindman, T.W. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 2004, 42, 161–180. [Google Scholar] [CrossRef]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-artizzu, X.P.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, J.M.; Pajares, G.; Montalvo, M.; Romeo, J.; Guijarro, M. Support vector machines for crop/weeds identification in maize fields. Expert Syst. Appl. 2012, 39, 11149–11155. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Shrestha, D.S.; Steward, B.L.; Birrell, S.J. Video processing for early stage maize plant detection. Biosyst. Eng. 2004, 89, 119–129. [Google Scholar] [CrossRef]
- Ling, P.P.; Ruzhitsky, V.N. Machine vision techniques for measuring the canopy of tomato seedling. J. Agric. Eng. Res. 1996, 65, 85–95. [Google Scholar] [CrossRef]
- Gebhardt, S.; Schellberg, J.; Lock, R.; Kühbauch, W. Identification of broad-leaved dock (Rumex obtusifolius L.) on grassland by means of digital image processing. Precis. Agric. 2006, 7, 165–178. [Google Scholar]
- Gebhardt, S.; Kühbauch, W. A new algorithm for automatic Rumex obtusifolius detection in digital images using colour and texture features and the influence of image resolution. Precis. Agric. 2007, 8, 1–13. [Google Scholar] [CrossRef]
- Tellaeche, A.; Burgos-Artizzu, X.P.; Pajares, G.; Ribeiro, A. A vision-based method for weeds identification through the Bayesian decision theory. Pattern Recognit. 2008, 41, 521–530. [Google Scholar] [CrossRef]
- Kirk, K.; Andersen, H.J.; Thomsen, A.G.; Jørgensen, J.R.; Jørgensen, R.N. Estimation of leaf area index in cereal crops using red–green images. Biosyst. Eng. 2009, 104, 308–317. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Tian, L.F.; Zhu, H. Robust crop and weed segmentation under uncontrolled outdoor illumination. Sensors 2011, 11, 6270–6283. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Kang, G.K.G.; Kim, Y.K.Y.; Pan, S.P.S.; Park, J.P.J. Efficient Image Retrieval Using Adaptive Segmentation of HSV Color Space. In Proceedings of the 2008 International Conference on Computational Sciences and Its Applications, Perugia, Italy, 30 June–3 July 2008; pp. 491–496. [Google Scholar] [CrossRef]
- Park, D.S.; Park, J.S.; Kim, T.Y.; Han, J.H. Image indexing using weighted color histogram. In Proceedings of the 10th International Conference on Image Analysis Process, Venice, Italy, 27–29 September 1999; pp. 909–914. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical Analysis; Springer: Berlin, Germany, 1978; pp. 105–116. [Google Scholar]
- Joblove, G.H.; Greenberg, D. Color spaces for computer graphics. In ACM Siggraph Computer Graphics; ACM: New York, NY, USA, 1978; Volume 12, pp. 20–25. [Google Scholar]
- Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
Camera Specs | |
---|---|
Sensor Size | 6.17 × 4.55 mm |
Operating Temperature | 0° to 40° C |
Focal length | ~4 mm |
Image Format (pixels) | 4000 × 3000 |
Sensor type | Sony EXMOR CMOS |
Image # | Crop | Flight Height (m) | Date | GSD (cm) |
---|---|---|---|---|
(1) | Soybean | 40 | 15 June | ~1.54 |
(2) | Soybean | 40 | 15 June | ~1.54 |
(3) | Canola | 40 | 3 June | ~1.54 |
(4) | Canola | 40 | 3 June | ~1.54 |
(5) | Canola | 40 | 15 June | ~1.54 |
(6) | Canola | 40 | 15 June | ~1.54 |
(7) | Canola | 40 | 23 June | ~1.54 |
(8) | Canola | 40 | 23 June | ~1.54 |
(9) | Organic Bean | 20 | 23 June | ~0.77 |
(10) | Organic Bean | 20 | 23 June | ~0.77 |
(11) | Organic Bean | 20 | 1 July | ~0.77 |
(12) | Organic Bean | 20 | 1 July | ~0.77 |
Image # | Crop | Flight Height (m) | Date | GSD (cm) |
---|---|---|---|---|
(13) | Soybean | 40 | 15 June | ~1.54 |
(14) | Soybean | 40 | 15 June | ~1.54 |
(15) | Soybean | 80 | 15 June | ~3.1 |
(16) | Soybean | 120 | 15 June | ~4.63 |
(17) | Canola | 40 | 3 June | ~1.54 |
(18) | Canola | 40 | 15 June | ~1.54 |
(19) | Canola | 80 | 15 June | ~3.1 |
(20) | Canola | 80 | 15 June | ~3.1 |
(21) | Canola | 120 | 15 June | ~4.63 |
(22) | Canola | 40 | 23 June | ~1.54 |
(23) | Canola | 40 | 23 June | ~1.54 |
(24) | Canola | 80 | 23 June | ~3.1 |
(25) | Canola | 80 | 23 June | ~3.1 |
(26) | Canola | 120 | 23 June | ~4.63 |
(27) | Organic Bean | 20 | 23 June | ~0.77 |
(28) | Organic Bean | 80 | 23 June | ~3.1 |
(29) | Organic Bean | 20 | 1 July | ~0.77 |
(30) | Organic Bean | 40 | 1 July | ~1.54 |
(31) | Organic Bean | 80 | 1 July | ~3.1 |
(32) | Organic Bean | 120 | 1 July | ~4.63 |
(33) | Organic Bean | 20 | 1 July | ~0.77 |
(34) | Organic Bean | 20 | 1 July | ~0.77 |
Image # | Accuracy % | ||
---|---|---|---|
σ | 2σ | 3σ | |
(1) | 90.9 | 91.1 | N/A |
(2) | 89.4 | N/A | N/A |
(3) | 68.7 | 90.4 | 96.7 |
(4) | 62.2 | 88.0 | 94.9 |
(5) | 80.4 | 90.0 | N/A |
(6) | 83.6 | 92.1 | 97.0 |
(7) | 87.8 | 96.8 | 99.5 |
(8) | 96.1 | 97.3 | 93.2 |
(9) | N/A | N/A | N/A |
(10) | 90.1 | N/A | N/A |
(11) | 80.6 | 97.1 | N/A |
(12) | 83.6 | 92.9 | 97.7 |
Image # | /Accuracy % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
(1) | 45 | 73 | |||||||||
87.2 | 78.2 | ||||||||||
(2) | 45 | 73 | |||||||||
92.5 | 75.4 | ||||||||||
(3) | 43 | 51 | 61 | 74 | |||||||
95.2 | 89.9 | 87.5 | 87.1 | ||||||||
(4) | 43 | 51 | 55 | 61 | 74 | ||||||
96.6 | 91.0 | 89.7 | 88.4 | 87.8 | |||||||
(5) | 73 | 67 | 61 | 55 | 51 | 48 | 45 | 43 | 41 | 25 | |
75.1 | 86.6 | 91.6 | 97.0 | 98.7 | 97.5 | 94.7 | 92.5 | 89.6 | 71.6 | ||
(6) | 73 | 67 | 61 | 55 | 51 | 48 | 45 | 43 | 41 | 38 | 21 |
78.2 | 89.8 | 94.9 | 99.8 | 96.7 | 94.6 | 91.8 | 89.7 | 86.7 | 80.9 | 60.1 | |
(7) | 73 | 61 | 51 | 43 | 28 | ||||||
85.0 | 98.3 | 98.6 | 97.1 | 95.5 | |||||||
(8) | 61 | 57 | 51 | 45 | 43 | 41 | 25 | 13 | |||
98.7 | 98.8 | 96.6 | 94.8 | 94.1 | 93.5 | 90.8 | 90.7 | ||||
(9) | 43 | 51 | 55 | 61 | 67 | 74 | 78 | 82 | |||
99.9 | 79.2 | 72.3 | 62.5 | 57.1 | 51.5 | 48.9 | 47.4 | ||||
(10) | 43 | 48 | 51 | 55 | 61 | 67 | 74 | 78 | 82 | ||
84.3 | 98.5 | 95.8 | 89.2 | 79.3 | 72.3 | 62.6 | 57.3 | 53.8 | |||
(11) | 66 | 61 | 48 | 45 | 33 | ||||||
75.4 | 85.5 | 89.6 | 84.4 | 65.0 | |||||||
(12) | 67 | 61 | 55 | 48 | 43 | 40 | 38 | ||||
76.7 | 87.1 | 94.9 | 93.0 | 84.9 | 79.1 | 74.4 |
Image # | /Accuracy % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
(1) | 58 | |||||||||
77.1 | ||||||||||
(2) | 45 | 48 | 66 | |||||||
93.4 | 91.1 | 87.2 | ||||||||
(3) | 45 | 48 | 66 | |||||||
94.7 | 92.2 | 87.9 | ||||||||
(4) | 77 | 76 | 68 | 58 | 50 | 25 | 24 | 14 | 13 | 7 |
43.9 | 44.8 | 53.5 | 65.2 | 80.6 | 78.7 | 78.7 | 78.6 | 78.6 | 78.6 | |
(5) | 47 | 55 | 58 | 67 | 68 | 73 | ||||
67.5 | 61.3 | 59.2 | 54.7 | 54.6 | 52.4 | |||||
(6) | 68 | 51 | 41 | 38 | 37 | |||||
94.7 | 98.6 | 96.7 | 96.2 | 96.1 | ||||||
(7) | 68 | 51 | 50 | 41 | 38 | 23 | 22 | 21 | ||
94.0 | 96.6 | 96.3 | 93.5 | 92.5 | 90.8 | 90.8 | 90.8 | |||
(8) | 45 | 48 | 57 | 61 | 67 | 68 | ||||
93.6 | 84.6 | 69.5 | 62.5 | 57.1 | 57.1 | |||||
(9) | 45 | 48 | 61 | 67 | 68 | |||||
90.5 | 98.5 | 79.3 | 72.3 | 72.3 | ||||||
(10) | 66 | 43 | ||||||||
75.4 | 80.1 | |||||||||
(11) | 58 | 51 | 43 | 38 | ||||||
92.9 | 97.0 | 84.9 | 74.4 | |||||||
(12) | 58 | |||||||||
77.1 |
Image # | /Accuracy % | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
(5) | 67 | 61 | 55 | 55 | 48 | 48 | 43 | 40 | |
86.6 | 91.6 | 97.0 | 97.0 | 97.5 | 97.5 | 92.5 | 88.1 | ||
(6) | 78 | 67 | 55 | 55 | 48 | 48 | 43 | 40 | 19 |
64.3 | 89.8 | 99.8 | 99.8 | 94.6 | 94.6 | 89.7 | 85.1 | 60.1 | |
(7) | 61 | 53 | 50 | 45 | |||||
98.3 | 99.1 | 98.4 | 97.5 | ||||||
(8) | 71 | 63 | 61 | 53 | 45 | 38 | 25 | ||
88.6 | 97.8 | 98.7 | 97.3 | 94.8 | 92.5 | 90.8 | |||
(9) | 40 | 51 | 55 | 71 | |||||
89.8 | 79.2 | 72.3 | 53.8 | ||||||
(10) | 40 | 62 | 66 | 71 | |||||
75.1 | 79.3 | 72.9 | 66.8 | ||||||
(11) | 61 | 55 | 51 | 48 | 40 | ||||
85.5 | 98.8 | 94.6 | 89.6 | 75.1 | |||||
(12) | 61 | 55 | 55 | 48 | 48 | 40 | |||
87.1 | 94.9 | 94.9 | 93.0 | 93.0 | 79.1 |
Image # | Threshold Accuracy % | ||||
---|---|---|---|---|---|
th_1 | th_2 | th_3 | th_4 | th_5 | |
(1) | 91.1 | N/A | 87.2 | 0.0 | N/A |
(2) | 89.4 | N/A | 92.5 | 77.1 | N/A |
(3) | 96.7 | N/A | 89.9 | 89.3 | N/A |
(4) | 94.9 | N/A | 90.3 | 90.3 | N/A |
(5) | 90.0 | 91.6 | 98.4 | 97.5 | 98.5 |
(6) | 97.0 | 97.1 | 96.0 | 94.6 | 96.7 |
(7) | 99.5 | N/A | 98.8 | 97.8 | 99.1 |
(8) | 93.2 | N/A | 96.3 | 96.3 | 96.8 |
(9) | N/A | N/A | 72.1 | 67.6 | 84.5 |
(10) | 92.4 | 91.7 | 89.2 | 84.5 | 88.9 |
(11) | 97.1 | 89.7 | 94.6 | 98.8 | 94.6 |
(12) | 97.7 | 79.4 | 97.0 | 93.0 | 97.7 |
Image # | Vegetation Segmentation Accuracy % | ||||
---|---|---|---|---|---|
Proposed Methodology | ExG + Otsu | ExGR + Otsu | NGRDI + Otsu | Hue + Otsu | |
(13) | 65.70 | 85.95 | 64.78 | 64.76 | 98.70 |
(14) | 73.82 | 95.71 | 67.60 | 67.93 | 97.71 |
(15) | 54.86 | 79.66 | 54.55 | 54.55 | 90.84 |
(16) | 53.73 | 83.47 | 53.45 | 53.45 | 91.62 |
(17) | 91.10 | 36.93 | 73.36 | 77.83 | 84.71 |
(18) | 97.16 | 86.83 | 37.52 | 76.08 | 93.72 |
(19) | 88.45 | 77.00 | 25.37 | 61.78 | 85.13 |
(20) | 70.84 | 86.38 | 42.18 | 70.67 | 92.19 |
(21) | 91.55 | 79.91 | 32.78 | 53.40 | 84.02 |
(22) | 99.53 | 22.44 | 20.28 | 26.38 | 93.87 |
(23) | 96.02 | 24.64 | 23.80 | 26.44 | 97.26 |
(24) | 98.79 | 26.80 | 43.03 | 44.84 | 94.73 |
(25) | 98.28 | 21.10 | 35.12 | 45.21 | 74.25 |
(26) | 97.84 | 24.32 | 14.67 | 41.12 | 99.39 |
(27) | 88.72 | 92.31 | 64.61 | 72.17 | 98.58 |
(28) | 80.30 | 79.50 | 61.97 | 72.62 | 86.57 |
(29) | 95.40 | 70.51 | 31.64 | 62.63 | 30.64 |
(30) | 69.31 | 70.80 | 41.48 | 57.73 | 84.38 |
(31) | 75.21 | 77.12 | 40.14 | 51.10 | 87.30 |
(32) | 88.16 | 90.36 | 61.75 | 64.50 | 95.80 |
(33) | 86.92 | 57.01 | 18.28 | 53.22 | 16.74 |
(34) | 95.59 | 70.12 | 29.64 | 65.50 | 27.65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanein, M.; Lari, Z.; El-Sheimy, N. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms. Sensors 2018, 18, 1253. https://doi.org/10.3390/s18041253
Hassanein M, Lari Z, El-Sheimy N. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms. Sensors. 2018; 18(4):1253. https://doi.org/10.3390/s18041253
Chicago/Turabian StyleHassanein, Mohamed, Zahra Lari, and Naser El-Sheimy. 2018. "A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms" Sensors 18, no. 4: 1253. https://doi.org/10.3390/s18041253
APA StyleHassanein, M., Lari, Z., & El-Sheimy, N. (2018). A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms. Sensors, 18(4), 1253. https://doi.org/10.3390/s18041253