Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice
<p>Location map for the study areas in the city of Zhuzhou, Hunan Province, China. DOY is the abbreviation for the day of year. (<b>a</b>) The location of Zhuzhou city in China; (<b>b</b>) the location of the study areas in Zhuzhou city; (<b>c</b>) diagram for the rice planting pattern; (<b>d</b>) the CCD images selected by the key periods in study area B.</p> "> Figure 2
<p>Flow chart of the WRT-WOFOST assimilation framework to find the key periods. (The WRT-WOFOST assimilation framework means assimilating the WOFOST model with WRT).</p> "> Figure 3
<p>Simplified structure of the improved WOFOST model with stress factor <span class="html-italic">f</span>.</p> "> Figure 4
<p>Harris algorithm process for the LAI curve. (<b>a</b>) is the original LAI curve; (<b>b</b>) is the smoothed LAI curve, the filter is Gaussian filter; (<b>c</b>,<b>d</b>) are the process of the Harris point detection.</p> "> Figure 5
<p>A 9 × 9 Gaussian window used to search for the dominant corner point.</p> "> Figure 6
<p>Dynamic simulation of the leaf area indexes (LAIs) by the optimized model for each study area.</p> "> Figure 7
<p>Process of the Harris algorithm of the LAI curve in study area C: (<b>a</b>) original LAI curve; (<b>b</b>) LAI curve with Gaussian filter; (<b>c</b>–<b>f</b>) process of searching for the dominant points in the LAI curve.</p> "> Figure 8
<p>Process of the Harris algorithm in the ratio curve: (<b>a</b>) original ratio curve; (<b>b</b>) ratio curve with Gaussian filter; (<b>c</b>–<b>f</b>) process of searching for the dominant points in the ratio curve.</p> "> Figure 9
<p>Dynamic assessment of the variations of LAI under heavy metal stress with the dominant points. (<b>a</b>) The locations of the dominant points in the original LAI curve and ratio curve: green areas represent the same location of the points; blue and red areas showed the different locations in the two kinds of curves; (<b>b</b>) the locations of the all dominant points in growth rate of rice roots (GR) for Area A, Area C and the differences between two areas.</p> "> Figure 10
<p>Assessment of the accuracy for the four dominant points. (<b>a</b>) shows the the fitted results of the LAI in study area C, (<b>b</b>) shows the ratio of the LAI in the two study areas.</p> "> Figure 11
<p>Spatial distribution of heavy metal stress level represented by continuous simulation of the WRT in study area B.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Preparation
2.2.1. Field Data
2.2.2. Remote Sensing Data
2.2.3. Meteorological Data
3. Method
3.1. Simulating the Dynamic LAIs under Heavy Metal Stress
3.2. Investigating the Key Periods Using the Harris Algorithm
3.3. The Application of the Key Periods for the RS-WOFOST Model
4. Results
4.1. Performance of the Improved WRT-WOFOST Model
4.2. Determination of the Key Periods
4.3. Assessment of the Key Periods
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, Y.; Wen, C.; Liu, X. China’s food security soiled by contamination. Science 2013, 339, 1382–1383. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, H.; Wu, G.; Wu, X. Feasibility of estimating heavy metal concentrations in phragmites australis using laboratory-based hyperspectral data—A case study along Le’an river, China. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S166–S170. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.J. Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron. 1993, 51, 173–212. [Google Scholar]
- Nordberg, G.; Jin, T.; Bernard, A.; Fierens, S.; Buchet, J.P.; Ye, T.; Kong, Q.; Wang, H. Low bone density and renal dysfunction following environmental cadmium exposure in China. Ambio A J. Hum. Environ. 2009, 31, 478–481. [Google Scholar] [CrossRef]
- Kopačková, V. Using multiple spectral feature analysis for quantitative pH mapping in a mining environment. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 28–42. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Li, J.; Li, T. Estimating regional heavy metal concentrations in rice by scaling up a field-scale heavy metal assessment model. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 12–23. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Wu, M.; Li, L.; Xiu, L. Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model. Comput. Geosci. 2011, 37, 1642–1652. [Google Scholar] [CrossRef]
- Schuerger, A.C.; Capelle, G.A.; Di Benedetto, J.A.; Mao, C.; Thai, C.N.; Evans, M.D.; Richards, J.T.; Blank, T.A.; Stryjewski, E.C. Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote Sens. Environ. 2003, 84, 572–588. [Google Scholar] [CrossRef]
- Rosso, P.H.; Pushnik, J.C.; Lay, M.; Ustin, S.L. Reflectance properties and physiological responses of salicornia virginica to heavy metal and petroleum contamination. Environ. Pollut. 2005, 137, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Dunagan, S.C.; Gilmore, M.S.; Varekamp, J.C. Effects of mercury on visible/Near-Infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ. Pollut. 2007, 148, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.D.; Ustin, S.L.; Rocke, D.M. Classification of contamination in salt marsh plants using hyperspectral reflectance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1088–1095. [Google Scholar] [CrossRef]
- Das, P.; Samantaray, S.; Rout, G. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Daud, M.; Sun, Y.; Dawood, M.; Hayat, Y.; Variath, M.; Wu, Y.-X.; Mishkat, U.; Najeeb, U.; Zhu, S. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J. Hazard. Mater. 2009, 161, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Jiang, W.; Wang, W.; Zhai, L. Evaluation of metal ion toxicity on root tip cells by the allium test. Isr. J. Plant Sci. 1995, 43, 125–133. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Xu, J.; Liang, J.; Lu, X.; Yang, J.; Zhu, Q. Interaction of cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop. Res. 2003, 83, 271–281. [Google Scholar] [CrossRef]
- Singh, R.; Jwa, N.-S. Understanding the responses of rice to environmental stress using proteomics. J. Proteome Res. 2013, 12, 4652–4669. [Google Scholar] [CrossRef] [PubMed]
- Curnel, Y.; de Wit, A.J.; Duveiller, G.; Defourny, P. Potential performances of remotely sensed LAI assimilation in WOFOST model based on an oss experiment. Agric. For. Meteorol. 2011, 151, 1843–1855. [Google Scholar] [CrossRef]
- Dente, L.; Satalino, G.; Mattia, F.; Rinaldi, M. Assimilation of leaf area index derived from ASAR and MERIS data into ceres-wheat model to map wheat yield. Remote Sens. Environ. 2008, 112, 1395–1407. [Google Scholar] [CrossRef]
- Dorigo, W.; Zurita-Milla, R.; de Wit, A.J.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Ines, A.V.; Das, N.N.; Hansen, J.W.; Njoku, E.G. Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sens. Environ. 2013, 138, 149–164. [Google Scholar] [CrossRef]
- Picart, S.S.; Sathyendranath, S.; Dowell, M.; Moore, T.; Platt, T. Remote sensing of assimilation number for marine phytoplankton. Remote Sens. Environ. 2014, 146, 87–96. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, S.; Shen, S. Assimilating remote sensing information with crop model using ensemble kalman filter for improving LAI monitoring and yield estimation. Ecol. Model. 2013, 270, 30–42. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Zhao, L.; Ding, C.; Jiang, J.; Wu, L. The dynamic assessment model for monitoring cadmium stress levels in rice based on the assimilation of remote sensing and the WOFOST model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1330–1338. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Wang, P.; Zhou, B.; Liu, M.; Li, X. The assimilation of spectral sensing and the WOFOST model for the dynamic simulation of cadmium accumulation in rice tissues. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 66–75. [Google Scholar] [CrossRef]
- Jin, M.; Liu, X.; Wu, L.; Liu, M. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 118–129. [Google Scholar] [CrossRef]
- Ma, G.; Huang, J.; Wu, W.; Fan, J.; Zou, J.; Wu, S. Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Math. Comput. Model. 2013, 58, 634–643. [Google Scholar] [CrossRef]
- Boogaard, H.L.; van Diepen, C.A.; Rutter, R.P.; Cabrera, J.M.C.A.; van Laar, H.H. WOFOST 7.1; User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5. Available online: http://library.wur.nl/WebQuery/wurpubs/309027 (accessed on 16 April 2018).
- Chino, M. The distribution of heavy metals in rice plants influenced by the time and the path of its supply. J. Sci. Soil Manure Jpn. 1973, 44, 204–210. [Google Scholar]
- Sankaran, R.P.; Ebbs, S.D. Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development. Physiol. Plant. 2008, 132, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Harris, C.; Stephens, M. A Combined Corner and Edge Detector; Plessey Research Roke Manor: Romsey, UK, 1988; p. 50. [Google Scholar]
- Mikolajczyk, K.; Schmid, C. Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 2004, 60, 63–86. [Google Scholar]
- Chen, Y.; Wu, F.; Lu, H.; Yao, C. Analysis on the water quality changes in the Xiangjiang river from 1981 to 2000. Resour. Environ. Yangtze Basin 2004, 13, 508–512. [Google Scholar]
- Wang, L.; Guo, Z.; Xiao, X.; Chen, T.; Liao, X.; Song, J.; Wu, B. Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang river, hunan province. J. Geogr. Sci. 2008, 18, 353–362. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Zeng, G.; Li, J.; Fang, Y.; Yuan, Q.; Wang, Y.; Ye, F. Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: A case study of Xiangjiang watershed, China. Environ. Monit. Assess. 2009, 152, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Xi, C.; Dai, T.; Huang, D. Distribution and pollution assessments of heavy metals in soils in Zhuzhou, Hunan. Geol. China 2008, 35, 524–530. [Google Scholar]
- Suo, L.; Liu, B.; Zhao, T.; Wu, Q.; An, Z. Evaluation and analysis of heavy metals in vegetable field of Beijing. Trans. Chin. Soc. Agric. Eng. 2016, 32, 179–186. [Google Scholar]
- Lu, R. Analytical Methods for Soils and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999; pp. 107–240. [Google Scholar]
- Wang, Q.; Wu, C.; Li, Q.; Li, J. Chinese HJ-1A/B satellites and data characteristics. Sci. China Earth Sci. 2010, 53, 51–57. [Google Scholar] [CrossRef]
- Vermote, E.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Posner, A.; Georgakakos, K.; Shamir, E. MODIS inundation estimate assimilation into soil moisture accounting hydrologic model: A case study in southeast asia. Remote Sens. 2014, 6, 10835–10859. [Google Scholar] [CrossRef]
- Miehle, P.; Livesley, S.J.; Li, C.; Feikema, P.M.; Adams, M.A.; Arndt, S.K. Quantifying uncertainty from large-scale model predictions of forest carbon dynamics. Glob. Chang. Biol. 2006, 12, 1421–1434. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranza, E. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Computer Vision—ECCV 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 430–443. [Google Scholar]
- Shi, J.; Tomasi, C. Good features to track. In Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’94), Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J. MODIS NDVI optimization to fit the AVHRR data series—Spectral considerations. Remote Sens. Environ. 1998, 66, 343–350. [Google Scholar] [CrossRef]
- Yoder, B.J.; Waring, R.H. The normalized difference vegetation index of small douglas-fir canopies with varying chlorophyll concentrations. Remote Sens. Environ. 1994, 49, 81–91. [Google Scholar] [CrossRef]
- Fan, L.; Luo, Z. Rice yield estimation based on MODIS-NDVI: Case study of Chongqing Three Gorges Warehouse District. Southwest China J. Agric. Sci. 2009, 22, 1416–1419. [Google Scholar]
- Wang, Z.; Liu, C.; Huete, A. From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research. Acta Ecol. Sin. 2002, 23, 979–987. [Google Scholar]
- Wang, F.-M.; Huang, J.-F.; Tang, Y.-L.; Wang, X.-Z. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Kennedy, J. Particle swarm optimization. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; pp. 760–766. [Google Scholar]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric response of rice fields at C-band: Analysis and phenology retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993. [Google Scholar] [CrossRef]
- Devkota, K.; Manschadi, A.; Devkota, M.; Lamers, J.; Ruzibaev, E.; Egamberdiev, O.; Amiri, E.; Vlek, P. Simulating the impact of climate change on rice phenology and grain yield in irrigated drylands of central Asia. J. Appl. Meteorol. Climatol. 2013, 52, 2033–2050. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Schmid, C. An affine invariant interest point detector. In Proceedings of the 7th European Conference on Computer Vision (ECCV’02), Copenhagen, Denmark, 28–31 May 2002; pp. 128–142. [Google Scholar]
Heavy Metals | Background Value (bi) (mg/kg) 1 | A (113°12′ E, 27°47′ N) | B (113°10′ E, 2740′ N) | C (113°2′ E, 27°50′ N) | |||
---|---|---|---|---|---|---|---|
Soil 2 | Rice 2 | Soil 2 | Rice 2 | Soil 2 | Rice 2 | ||
Cd | 1.43 | 0.84 | 0.82 | 2.26 | 7.23 | 3.28 | 5.90 |
Pb | 82.78 | 78.33 | 10.60 | 91.05 | 15.18 | 120.75 | 36.73 |
Hg | 0.2 | 0.18 | 0.04 | 0.3 | 0.04 | 0.51 | 0.06 |
As | 19.11 | 10.23 | 5.39 | 18.33 | 6.29 | 18.15 | 7.04 |
Pollution Index 3 (Cd) | 0.58 | 1.58 | 2.29 | ||||
Pollution Level | Safe | Level I | Level II |
Sample Plot | 184 | 211 | 241 | 260 |
---|---|---|---|---|
A | 34.4 | 245.7 | 262.5 | 201.3 |
C | 31.0 | 223.6 | 239.3 | 189.4 |
Study Area | Minimum | Maximum | Average |
---|---|---|---|
A | 0.928 | 0.991 | 0.984 |
C | 0.815 | 0.896 | 0.850 |
Study Area | R2 | MAE |
---|---|---|
A | 0.988 | 0.214 |
C | 0.97 | 0.199 |
Sample Plot | Serial Number of the Dominant Point | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Study Area C | 184 (DOY) | 199 | 217 | 243 |
Ratio (LAIC/LAIA) | 172 | 184 | 217 | 243 |
Result | 184 | 199 | 217 | 243 |
Period | Time Points | Efficiency/s | R2 | MAE |
---|---|---|---|---|
I | 8 | 521 | 0.984 | 0.113 |
II | 4 | 283 | 0.956 | 0.265 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Qian, X.; Liu, X.; Xu, Z. Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice. Sensors 2018, 18, 1230. https://doi.org/10.3390/s18041230
Zhao S, Qian X, Liu X, Xu Z. Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice. Sensors. 2018; 18(4):1230. https://doi.org/10.3390/s18041230
Chicago/Turabian StyleZhao, Shuang, Xu Qian, Xiangnan Liu, and Zhao Xu. 2018. "Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice" Sensors 18, no. 4: 1230. https://doi.org/10.3390/s18041230