Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment
<p>SEM images of as-synthesized SnO<sub>2</sub> nanoflowers (<b>a</b>) before annealing and (<b>b</b>) annealed in a vacuum condition.</p> "> Figure 2
<p>XRD patterns of as-synthesized SnO<sub>2</sub> nanoflowers before and after annealing treatments.</p> "> Figure 3
<p>The XPS patterns of the SnO<sub>2</sub> nanoflowers (<b>a</b>,<b>c</b>) before annealing and (<b>b</b>,<b>d</b>) after annealing.</p> "> Figure 4
<p>BET surface area, pore volume, and pore width of the as-synthesized SnO<sub>2</sub> nanoflowers before and after annealing treatment.</p> "> Figure 5
<p>(<b>a</b>) The photo image, (<b>b</b>) the I-V characteristics, and (<b>c</b>) the R-V curves of the as-fabricated hydrogen sensors based on the SnO<sub>2</sub> nanoflowers before and after annealing treatment.</p> "> Figure 6
<p>The hydrogen response of as-fabricated sensors based on the SnO<sub>2</sub> nanoflowers before and after annealing treatments. (<b>a</b>) Time-dependent variation of resistance with hydrogen in and out; (<b>b</b>,<b>c</b>) Response and recovery time; (<b>d</b>,<b>e</b>) Response and recovery rate.</p> "> Figure 7
<p>The room-temperature hydrogen response of the device with annealed SnO<sub>2</sub> nanoflowers. (<b>a</b>) The time-dependent variation of sensor resistance toward different concentration of hydrogen in air; (<b>b</b>) The relationship between the sensor response and hydrogen concentration; (<b>c</b>) Response and recovery times, of the sensor toward 1000 ppm H<sub>2</sub>, C<sub>2</sub>H<sub>5</sub>OH, CO, and CH<sub>4</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Materials Characterizations
3.2. Sensor Performance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kahn, M.E. Fueling the future. Science 2015, 347, 239. [Google Scholar] [CrossRef]
- Sumida, S.; Okazaki, S.; Asakura, S.; Nakagawa, H.; Murayama, H.; Hasegawa, T. Distributed hydrogen determination with fiber-optic sensor. Sens. Actuators B Chem. 2005, 108, 508–514. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Han, S.D.; Stetter, J.R. Review of electrochemical hydrogen sensors. Chem. Rev. 2009, 109, 1402–1433. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Wang, Z.; Hu, Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors 2012, 12, 5517–5550. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, C.; Zheng, B.; Geng, X.; Debliquy, M. Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review. Int. J. Hydrog. Energy 2017, 42, 20386–20397. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Z.; Hu, Y.; Luo, X.; Lei, J.; Zhou, D.; Fei, L.; Wang, Y.; Gu, H. Highly Responsive Room-Temperature Hydrogen Sensing of α-MoO3 Nanoribbon Membranes. ACS Appl. Mater. Interfaces 2015, 7, 9247–9253. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; You, K.; Hu, Y.; Yang, S.; Pan, X.; Wang, Z.; Chen, W.; Gu, H. Rapid hydrogen sensing response and aging of α-MoO3 nanowires paper sensor. Int. J. Hydrog. Energy 2017, 42, 8399–8405. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Labat, F.; Ciofini, I.; Pauporté, T.; Adelung, R. Ultra-Sensitive and Selective Hydrogen Nanosensor with Fast Response at Room Temperature Based on a Single Pd/ZnO Nanowire. Sens. Actuators B Chem. 2017, 254, 1259–1270. [Google Scholar] [CrossRef]
- Nguyen, K.; Chu, M.H.; Ngoc, T.M.; Dang, T.T.L.; Nguyen, D.H.; Van, D.N.; Van, H.N. Low-temperature prototype hydrogen sensors using Pd-decorated SnO2 nanowires for exhaled breath applications. Sens. Actuators B Chem. 2017, 253, 156–163. [Google Scholar] [CrossRef]
- Zhao, M.; Wong, M.H.; Man, H.C.; Ong, C.W. Resistive hydrogen sensing response of Pd-decorated ZnO “nanosponge” film. Sens. Actuators B Chem. 2017, 249, 624–631. [Google Scholar] [CrossRef]
- Göpel, W.; Schierbaum, K.D. SnO2 sensors: Current status and future prospects. Sens. Actuators B Chem. 1995, 26, 1–12. [Google Scholar] [CrossRef]
- Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Sokovykh, E.V.; Oleksenko, L.P.; Maksymovych, N.P.; Matushko, I.P. Influence of Conditions of Pd/SnO2 Nanomaterial Formation on Properties of Hydrogen Sensors. Nanoscale Res. Lett. 2017, 12, 383. [Google Scholar] [CrossRef] [PubMed]
- Adamyan, A.Z.; Adamyan, Z.N.; Aroutiounian, V.M.; Arakelyan, A.H.; Touryan, K.J.; Turner, J.A. Sol–gel derived thin-film semiconductor hydrogen gas sensor. Int. J. Hydrog. Energy 2007, 32, 4101–4108. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Umar, A.; Tomar, M.; Gupta, V. Custom designed metal anchored SnO2 sensor for H2 detection. Int. J. Hydrog. Energy 2017, 42, 4597–4609. [Google Scholar] [CrossRef]
- Song, S.K.; Cho, J.S.; Choi, W.K.; Jung, H.J.; Choi, D.; Lee, J.Y.; Baik, H.K.; Koh, S.K. Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition. Sens. Actuators B Chem. 1998, 46, 42–49. [Google Scholar] [CrossRef]
- Munasinghe, M.A.H.M.; Comini, E.; Zappa, D.; Poli, N.; Sberveglieri, G. Low Temperature Gas Sensing Properties of Graphene Oxide/SnO2 Nanowires Composite for H2. Procedia Eng. 2016, 168, 305–308. [Google Scholar] [CrossRef]
- Wan, Q.; Wang, T.H. Single-crystalline Sb-doped SnO2 nanowires: Synthesis and gas sensor application. Chem. Commun. 2005, 30, 3841–3843. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Jiang, T.; Xu, X.; Wang, C. Ultrasensitive Hydrogen Sensor Based on Pd0-Loaded SnO2 Electrospun Nanofibers at Room Temperature. ACS Appl. Mater. Interfaces 2013, 5, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T. Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires. J. Alloys Compd. 2009, 488, L21–L25. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Z.; Hu, Y.; Cai, Y.; Huang, R.; Li, X.; Huang, Z.; Lan, Z.; Chen, W.; Gu, H. Defect-original room-temperature hydrogen sensing of MoO3 nanoribbon: Experimental and theoretical studies. Sens. Actuators B Chem. 2018, 260, 21–32. [Google Scholar] [CrossRef]
- Li, Y.; Deng, D.; Chen, N.; Xing, X.; Liu, X.; Xiao, X.; Wang, Y. Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. J. Alloys Compd. 2017, 710, 216–224. [Google Scholar] [CrossRef]
- Öztürk, S.; Kılınç, N.; Torun, İ.; Kösemen, A.; Şahin, Y.; Öztürk, Z.Z. Hydrogen sensing properties of ZnO nanorods: Effects of annealing, temperature and electrode structure. Int. J. Hydrog. Energy 2014, 39, 5194–5201. [Google Scholar] [CrossRef]
- Szuber, J.; Czempik, G.; Larciprete, R.; Adamowicz, B. The comparative XPS and PYS studies of SnO2 thin films prepared by L-CVD technique and exposed to oxygen and hydrogen. Sens. Actuators B Chem. 2000, 70, 177–181. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wang, Z.; Chen, Z.; Yang, S.; Fu, X.; Huang, R.; Li, X.; Xiong, J.; Hu, Y.; Gu, H. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment. Sensors 2018, 18, 949. https://doi.org/10.3390/s18040949
Liu G, Wang Z, Chen Z, Yang S, Fu X, Huang R, Li X, Xiong J, Hu Y, Gu H. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment. Sensors. 2018; 18(4):949. https://doi.org/10.3390/s18040949
Chicago/Turabian StyleLiu, Gao, Zhao Wang, Zihui Chen, Shulin Yang, Xingxing Fu, Rui Huang, Xiaokang Li, Juan Xiong, Yongming Hu, and Haoshuang Gu. 2018. "Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment" Sensors 18, no. 4: 949. https://doi.org/10.3390/s18040949
APA StyleLiu, G., Wang, Z., Chen, Z., Yang, S., Fu, X., Huang, R., Li, X., Xiong, J., Hu, Y., & Gu, H. (2018). Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment. Sensors, 18(4), 949. https://doi.org/10.3390/s18040949