Research on Flow Field Perception Based on Artificial Lateral Line Sensor System
<p>Schematic of Superficial Neuromasts and Canal Neuromasts.</p> "> Figure 2
<p>The results of the meshing and the definition of the axes. (<b>a</b>) The plane mesh; the green area represents the fluid domain and the oval shape represents the carrier. (<b>b</b>) The definition of axes; the dark blue oval shape represents the carrier in the picture.</p> "> Figure 3
<p>Pressure distribution of carrier surface at different flow velocity. (<b>a</b>) Dynamic pressure; (<b>b</b>) Static pressure.</p> "> Figure 4
<p>The pressure sensitive point on carrier surface.</p> "> Figure 5
<p>The surface pressure curve in different angles under 0.5 m/s. (<b>a</b>) A schematic of angle; (<b>b</b>) Dynamic pressure; (<b>c</b>) Static pressure.</p> "> Figure 6
<p>Artificial lateral line system. (<b>a</b>) Sensor distribution; (<b>b</b>) 3D modeling. This model includes the shell, sensors and embedded hardware.</p> "> Figure 7
<p>Simulation of static obstacle. (<b>a</b>) Cylindrical obstructions; (<b>b</b>) Square obstructions. The circle represents a circular obstacle, the square represents a square obstacle, and the oval shape represents a carrier.</p> "> Figure 8
<p>Cylindrical obstructions with diameter of 50 mm. (<b>a</b>) Dynamic pressure; (<b>b</b>) Static pressure.</p> "> Figure 9
<p>Cylindrical obstructions with diameter of 100 mm. (<b>a</b>) Dynamic pressure; (<b>b</b>) Static pressure.</p> "> Figure 10
<p>Cylindrical obstructions with diameter of 200 mm. (<b>a</b>) Dynamic Pressure; (<b>b</b>) Static Pressure.</p> "> Figure 11
<p>Square obstructions with side length of 100 mm. (<b>a</b>) Dynamic Pressure; (<b>b</b>) Static Pressure.</p> "> Figure 12
<p>Square obstructions with side length of 100 mm. (<b>a</b>) Dynamic Pressure; (<b>b</b>) Static Pressure.</p> "> Figure 13
<p>Cylindrical obstructions with diameter of 100 mm. (<b>a</b>) Dynamic Pressure; (<b>b</b>) Static Pressure.</p> "> Figure 14
<p>A schematic of the simulation environment.</p> "> Figure 15
<p>Surface pressure distribution with moving carrier with d = 100 mm. (<b>a</b>) Dynamic Pressure; (<b>b</b>) Static Pressure.</p> "> Figure 16
<p>Surface pressure distribution with moving carrier with d = 300 mm. (<b>a</b>) Dynamic Pressure; (<b>b</b>) Static Pressure.</p> "> Figure 17
<p>The schematic of simulation environment. In the picture, a circle represents a circular obstacle, and the oval represents a carrier.</p> "> Figure 18
<p>Surface pressure distribution with static carrier. (<b>a</b>) Dynamic Pressure; (<b>b</b>) Static Pressure.</p> "> Figure 19
<p>The process of environmental perception method.</p> "> Figure 20
<p>The overall program about control system.</p> "> Figure 21
<p>The physical hardware connection of lateral line.</p> "> Figure 22
<p>The sink experiment of lateral line.</p> "> Figure 23
<p>The process of the No. 1 sensor pressure data.</p> "> Figure 24
<p>The results fit of the simulation.</p> "> Figure 25
<p>The pressure curve fitting.</p> "> Figure 26
<p>The curve fitting of the experimental data.</p> "> Figure 27
<p>The amplitude-frequency characteristic of the sensor No. 2.</p> "> Figure 28
<p>The results of the simulation. (<b>a</b>) Pressure Difference with <span class="html-italic">v</span> = 0.5 m/s; (<b>b</b>) Pressure Difference with <span class="html-italic">v</span> = 0.3 m/s.</p> "> Figure 29
<p>The network topology. In the picture, green indicates the input and output layers, purple indicates the hidden layer, w is the weight, b is the offset, and <math display="inline"> <semantics> <mo>∼</mo> </semantics> </math> indicates the activation function.</p> "> Figure 30
<p>The output of network. (<b>a</b>) Square obstacle identification; (<b>b</b>) Circle obstacle identification.</p> ">
Abstract
:1. Introduction
2. Biomechanical Model of Lateral Line
- Flow velocity estimation
- Attitude perception
- Obstacle identification.
3. Optimal Topology of Sensors
4. Obstacle Sensing Algorithm Based on Simulation
4.1. Simulation of Static Obstacle
4.2. Simulation of Moving Carrier
4.3. Simulation of Vibrating Obstacle
5. Experiments of Artificial Lateral Line
5.1. Experiments Design
5.2. Underwater Experiments
6. Experimental Analysis of Artificial Lateral Line
6.1. Hydrostatic Correction
6.2. Velocity Estimation
6.3. Attitude Perception
6.4. Obstacle Identification
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krahe, R.; Maler, L. Neural maps in the electrosensory system of weakly electric fish. Curr. Opin. Neurobiol. 2014, 24, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Blaxter, J.H.S.; Fuiman, L.A. The Mechanosensory Lateral Line: Neurobiology and Evolution; Coombs, S., Gorner, P., Munz, H., Eds.; Springer Science & Business Media: Berlin, German, 2012; pp. 481–499. [Google Scholar]
- Kanter, M.J.; Coombs, S. Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin. J. Exp. Biol. 2003, 206, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.A. Lateral line receptors: Where do they come from developmentally and where is our research going. Brain Behav. Evol. 2004, 64, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, D.; Janssen, J. Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan Environ. Biol. Fishes 2006, 12, 111–117. [Google Scholar] [CrossRef]
- Yang, Y.; Nguyen, N.; Chen, N.; Lockwood, M.; Tucker, C.; Hu, H.; Bleckmann, H.; Liu, C.; Jones, D.L. Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Bioinspir. Biomim. 2010, 5, 16001. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Chen, J.; Zou, J.; Bullen, D.; Liu, C.; Delcomyn, F. Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microeng. 2002, 12, 655–661. [Google Scholar] [CrossRef]
- Kroese, A.B.A.; Schellart, N.A.M. Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. J. Neurophys. 1992, 68, 2212–2221. [Google Scholar] [CrossRef] [PubMed]
- Pohlmann, K.; Atema, J.; Breithaupt, T. The importance of the lateral line in nocturnal predation of piscivorous catfish. J. Exper. Biol. 2004, 207, 2971–2978. [Google Scholar] [CrossRef] [PubMed]
- Bleckmann, H. 3-D ofientation with the octavolateralis system. J. Physiol. Paris 2004, 98, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Pandya, S.; Yang, Y.; Liu, C. Biomimetic Imaging of Flow Phenomena. Int. Conf. Acoust. Speech Signal Process. 2007, 2, II-933–II-936. [Google Scholar]
- DeVries, L.; Lagor, F.D.; Lei, H.; Tan, X.; Paley, D.A. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line. Bioinspir. Biomim. 2015, 10, 025002. [Google Scholar] [CrossRef] [PubMed]
- Netten, S.M.V. Hydrodynamics of the excitation of the cupula in the fish canal lateral line. Vet. Dermatol. 1991, 18, 324–331. [Google Scholar] [CrossRef]
- Chambers, L.D.; Akanyeti, O.; Venturelli, R. A fish perspective: Detecting flow features while moving using an artificial lateral line in steady and unsteady flow. J. R. Soc. Interface 2014, 11. [Google Scholar] [CrossRef] [PubMed]
- Netten, S.M.V. Hydrodynamics detection by cupulae in a lateral-line canal: Functional relations between physics and physiology. Biol. Cybern. 2006, 94, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Venturelli, R.; Akanyeti, O.; Visentin, F.; Ježov, J.; Chambers, L.D.; Toming, G.; Brow, J.; Kruusmaa, M.; Megill, W.M.; Fiorini, P. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows. Bioinspir. Biomim. 2012, 7, 36004–36015. [Google Scholar] [CrossRef] [PubMed]
- Tan, S. Underwater artificial lateral line flow sensors. Microsyst. Technol. 2014, 20, 2123–2136. [Google Scholar]
- Wannenburg, J.; Malekian, R. Physical Activity Recognition from Smartphone Accelerometer Data for User Context Awareness Sensing. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 3142–3149. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, F.; Li, Z.; Malekian, R.; Xie, Y. The Development of Key Technologies in Applications of Vessels Connected to the Internet. Symmetry 2017, 9, 211. [Google Scholar] [CrossRef]
- Yu, J.; Malekian, R.; Chang, J.; Su, B. Modeling of whole-space transient electromagnetic responses based on FDTD and its application in the mining industry. IEEE Trans. Ind. Inform. 2017, 13, 2974–2982. [Google Scholar] [CrossRef]
Mesh (Icem) | |||
Fluid Dimensions | 1 m × 3 m | Carrier Dimensions | 0.1 m × 0.4 m |
Number of Grids | 232,776 | Grid type | Unstructured grids |
Hydrodynamic Simulation (Fluent) | |||
Physical model | Standard K- model | Boundary conditions | Velocity inlet/pressure outlet |
Inlet velocity | −1 m/s | Reynolds number | 49,900–499,000 |
Extreme Points | Dynamic Pressure | Static Pressure |
---|---|---|
Maximum point coordinates | −0.387 | −0.456 0 0.456 |
−0.066 | ||
0.057 | ||
0.384 | ||
Minimum point coordinates | −0.456 0 0.456 | −0.387 |
−0.066 | ||
0.057 | ||
0.384 |
Obstacle Dimensions | Round | Square | |||
---|---|---|---|---|---|
Feature size/mm | 50 | 100 | 200 | 300 | 100 (141) |
Theoretical frequency/Hz | 0.42 | 0.21 | 0.105 | 0.07 | 0.141 |
Simulation frequency/Hz | 0.4918 | 0.298 | 0.165 | 0.096 | 0.149 |
Diameter/mm | Main Frequency Peak/Hz | ||
---|---|---|---|
100 | 0.05 | 0.201 | 0.452 |
300 | 0.05 | 0.256 | 0.513 |
Diameter/mm | Theoretical Shedding Frequency/Hz | Simulation Frequency/Hz | Moving Simulation Frequency/Hz | ||
---|---|---|---|---|---|
Static | Moving | Static | Moving | ||
100 | 0.21 | 0.46 | 0.298 | 0.548 | 0.452 |
300 | 0.07 | 0.32 | 0.096 | 0.346 | 0.256 |
Vibrating FrequencyHz | Pressure Main FrequencyHz | |||
---|---|---|---|---|
0.2 | 0.049 | 0.199 | 0.298 | 0.398 |
0.4 | 0.049 | 0.149 | 0.248 | 0.348 |
0.6 | 0.149 | 0.248 | 0.348 | 0.447 |
Item | Parameters |
---|---|
Pool size | 1 W × 1.14 (H)(m) |
Water density | 1.0 × 103 kg/m3 |
Experimental water temperature | 18 °C |
Maximum flow rate | 0.8 m3/s |
Maximum ideal flow velocity | 0.8 m/s |
Flow Field | Velocity Estimated Method | Fit Degree |
---|---|---|
Uniform | stagnation pressure fitting | 0.9755 |
static pressure fitting | 0.94–0.96 | |
Bernoulli method | 0.9925 | |
turbulent | Karman vortex method | 0.9893 |
Sensor Pair | Fitness | |
---|---|---|
V = 0.3 m/s | V = 0.5 m/s | |
6–8 | 0.9856 | 0.9917 |
13–11 | 0.9282 | 0.9336 |
21–19 | 0.9643 | 0.9811 |
22–20 | 0.8534 | 0.9538 |
Mean | 0.9328 | 0.965 |
Characteristic Frequency (Hz) | Velocity (m/s) | Calculated Size (mm) | Actual Size (mm) | Error Rate |
---|---|---|---|---|
0.667 | 0.482 | 151.7 | D200 | 24.15% |
1.361 | 0.433 | 66.8 | D100 | 33.2% |
2.140 | 0.413 | 40.5 | D50 | 19% |
0.477 | 0.534 | 235.1 | A200 (282.8) | 16.86% |
0.918 | 0.492 | 112.5 | A100 (141.4) | 20.43% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wang, M.; Wang, A.; Wang, S.; Yang, T.; Malekian, R.; Li, Z. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System. Sensors 2018, 18, 838. https://doi.org/10.3390/s18030838
Liu G, Wang M, Wang A, Wang S, Yang T, Malekian R, Li Z. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System. Sensors. 2018; 18(3):838. https://doi.org/10.3390/s18030838
Chicago/Turabian StyleLiu, Guijie, Mengmeng Wang, Anyi Wang, Shirui Wang, Tingting Yang, Reza Malekian, and Zhixiong Li. 2018. "Research on Flow Field Perception Based on Artificial Lateral Line Sensor System" Sensors 18, no. 3: 838. https://doi.org/10.3390/s18030838
APA StyleLiu, G., Wang, M., Wang, A., Wang, S., Yang, T., Malekian, R., & Li, Z. (2018). Research on Flow Field Perception Based on Artificial Lateral Line Sensor System. Sensors, 18(3), 838. https://doi.org/10.3390/s18030838