A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery
<p>Workflow of the proposed ship detection algorithm.</p> "> Figure 2
<p>Sketch map of speckle noise in SAR imagery. (<b>a</b>) Homogeneous area in SAR imagery; (<b>b</b>) Homogeneous area in optical imagery.</p> "> Figure 3
<p>Changing trend curve of parameter <span class="html-italic">a<sub>k</sub></span> with different <span class="html-italic">ε</span>. The blue curve corresponds to <span class="html-italic">ε</span><sub>1</sub> and the black curve corresponds to <span class="html-italic">ε</span><sub>2</sub>.</p> "> Figure 4
<p>Schematic diagram of integral image.</p> "> Figure 5
<p>Diagram of integral image fast calculation. (<b>a</b>) Entire integral image calculation diagram; (<b>b</b>) Sub area-based integral calculation diagram.</p> "> Figure 6
<p>Processing schematic of candidate area extraction. (<b>a</b>) Filtered image; (<b>b</b>) Gradient image; (<b>c</b>) Gradient enhanced graph; (<b>d</b>) Adaptive threshold segmentation result; (<b>e</b>) Morphological treatment results; (<b>f</b>) Marked results on original image.</p> "> Figure 7
<p>Schematic representation of Haar-like features. (<b>a</b>) Edge feature template; (<b>b</b>) Line feature template; (<b>c</b>) Center feature template; (<b>d</b>) A ship sub-image with different feature templates.</p> "> Figure 8
<p>Schematic diagram of a Radon transform, where the upper row is the original patch and the following is the transformed result. (<b>a</b>) Ship patches transformed to the vertical direction; (<b>b</b>) Ship patches transformed to the horizontal direction; (<b>c</b>) Non-ship patches transformation schematic.</p> "> Figure 9
<p>Adaboost training process diagram.</p> "> Figure 10
<p>Result of target identification. (<b>a</b>) The candidate areas; (<b>b</b>) Detection result labelled on the image, where the white rectangle indicates the candidate area, and the yellow rectangle indicates the final detection results, and the white circle indicates the ground truth.</p> "> Figure 11
<p>The index changing curve with different parameters. (<b>a</b>) Result of ENL changing curve in homogeneous region; (<b>b</b>) Result of SSIM changing curve in homogeneous region; (<b>c</b>) Result of ENL changing curve in target region; (<b>d</b>) Result of SSIM changing curve in target region.</p> "> Figure 12
<p>Schematic diagram of filtered effect: (<b>a</b>) Original patches; (<b>b</b>) Graphics of filtered maintain parameter <span class="html-italic">a</span>; (<b>c</b>) Result of filtering.</p> "> Figure 12 Cont.
<p>Schematic diagram of filtered effect: (<b>a</b>) Original patches; (<b>b</b>) Graphics of filtered maintain parameter <span class="html-italic">a</span>; (<b>c</b>) Result of filtering.</p> "> Figure 13
<p>Schematic diagram of filtered effect in bad sea condition under huge waves: (<b>a</b>) Original image; (<b>b</b>) Filtered image.</p> "> Figure 14
<p>Precision-recall curve of different template sizes. The x axis indicates recall and the y axis indicates precision. (<b>a</b>) Results of different sizes in line feature templates; (<b>b</b>) Results of different sizes in edge feature templates; (<b>c</b>) Results of different sizes in edge feature and line feature combined templates.</p> "> Figure 14 Cont.
<p>Precision-recall curve of different template sizes. The x axis indicates recall and the y axis indicates precision. (<b>a</b>) Results of different sizes in line feature templates; (<b>b</b>) Results of different sizes in edge feature templates; (<b>c</b>) Results of different sizes in edge feature and line feature combined templates.</p> "> Figure 15
<p>Classification error curve of different cascading layers. The <span class="html-italic">x</span> axis indicates the cascading layer and the <span class="html-italic">y</span> axis indicates the classification error. (<b>a</b>) With 50 cascading layers; (<b>b</b>) With 100 cascading layers; (<b>c</b>) With 200 cascading layers; (<b>d</b>) With 300 cascading layers; (<b>e</b>) With 400 cascading layers; (<b>f</b>) With 500 cascading layers.4.3. Detection Result Analysis.</p> "> Figure 15 Cont.
<p>Classification error curve of different cascading layers. The <span class="html-italic">x</span> axis indicates the cascading layer and the <span class="html-italic">y</span> axis indicates the classification error. (<b>a</b>) With 50 cascading layers; (<b>b</b>) With 100 cascading layers; (<b>c</b>) With 200 cascading layers; (<b>d</b>) With 300 cascading layers; (<b>e</b>) With 400 cascading layers; (<b>f</b>) With 500 cascading layers.4.3. Detection Result Analysis.</p> "> Figure 16
<p>Detection result of the proposed method. The white rectangle indicates the candidate area extracted by the proposed algorithm. The yellow rectangle indicates the final detection results. The white circle indicates the ground truth. (<b>a</b>) Detection result in clean sea surface; (<b>b</b>) Detection result in clutter sea surface.</p> "> Figure 16 Cont.
<p>Detection result of the proposed method. The white rectangle indicates the candidate area extracted by the proposed algorithm. The yellow rectangle indicates the final detection results. The white circle indicates the ground truth. (<b>a</b>) Detection result in clean sea surface; (<b>b</b>) Detection result in clutter sea surface.</p> ">
Abstract
:1. Introduction
2. Preprocessing of SAR Imagery
3. Ship Target Detection and Identification
3.1. Sea-Land Segmentation and Candidate Areas Extraction
3.1.1. Gradient Extraction
3.1.2. Gradient Enhancement and Integral Graph
3.1.3. Candidate Areas Extraction
3.2. Ship Target Identification
3.2.1. Haar-Like Feature Optimized
3.2.2. Target Identification Based on Cascade Classifier
4. Experiments and Results
4.1. Experiment of Noise Reduction
4.2. Experiment of Detection Method
4.2.1. Key Parameters Analysis of Haar-Like Feature Extraction
4.2.2. Key Parameters Analysis of Adaboost Classifier
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- El-Darymli, K.; Gill, E.W.; McGuire, P.; Power, D.; Moloney, C. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review. IEEE Access 2016, 4, 6014–6058. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Z.; Wu, H.; Pi, Y.; Yang, H. Target detection in complex scene of SAR image based on existence probability. EURASIP J. Adv. Signal Process. 2016, 1, 114. [Google Scholar] [CrossRef]
- Song, S.; Xu, B.; Li, Z.; Yang, J. Ship Detection in SAR Imagery via Variational Bayesian Inference. IEEE Geosci. Remote Sens. Lett. 2016, 13, 319–323. [Google Scholar] [CrossRef]
- Tao, D.; Doulgeris, A.P.; Brekke, C. A segmentation-based CFAR detection algorithm using truncated statistics. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2887–2898. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, G. A novel ship detection method for SAR images based on nonlinear diffusion filtering and Gaussian curvature. Remote Sens. Lett. 2016, 7, 210–218. [Google Scholar] [CrossRef]
- Novak, L.M.; Owirka, G.J.; Netishen, C.M. Performance of a high-resolution polarimetric SAR automatic target recognition system. Linc. Lab. J. 1993, 6, 11–24. [Google Scholar]
- Goldstein, G.B. False-alarm regulation in log-normal and Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. 1973, 1, 84–92. [Google Scholar] [CrossRef]
- Li, H.C.; Hong, W.; Wu, Y.R.; Fan, P.Z. On the empirical-statistical modeling of SAR images with generalized gamma distribution. IEEE J. Sel. Top. Sign. Proces. 2011, 5, 386–397. [Google Scholar]
- Di Bisceglie, M.; Galdi, C. CFAR detection of extended objects in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 833–843. [Google Scholar] [CrossRef]
- Kuttikkad, S.; Chellappa, R. Non-Gaussian CFAR techniques for target detection in high resolution SAR images. In Proceedings of the IEEE International Conference on Image Processing (ICIP 1994), Austin, TX, USA, 13–16 November 1994; pp. 910–914. [Google Scholar]
- Leng, X.; Ji, K.; Zhou, S.; Xing, X.; Zou, H. An adaptive ship detection scheme for spaceborne SAR imagery. Sensors 2016, 16, 1345. [Google Scholar] [CrossRef] [PubMed]
- Rey, M.T.; Drosopoulos, A.; Petrovic, D. A Search Procedure for Ships in RADARSAT Imagery; Report No. 1305; Defence Research Establishment Ottawa: Ottawa, ON, Canada, December 1996. [Google Scholar]
- Crisp, D.J. The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery; No. DSTO-RR-0272; Defence Science and Technology Organisation Salisbury (Australia) Info Sciences Lab: Salisbury, Australia, 2004. [Google Scholar]
- Qin, X.; Zhou, S.; Zou, H.; Gao, G. A CFAR detection algorithm for generalized gamma distributed background in high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 2013, 10, 806–810. [Google Scholar]
- Gao, G.; Ouyang, K.; Luo, Y.; Liang, S.; Zhou, S. Scheme of Parameter Estimation for Generalized Gamma Distribution and Its Application to Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1812–1832. [Google Scholar] [CrossRef]
- El-Darymli, K.; McGuire, P.; Power, D.; Moloney, C. Target detection in synthetic aperture radar imagery: A state-of-the-art survey. J. Appl. Remote Sens. 2013, 7, 071598. [Google Scholar] [CrossRef]
- Gao, G. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2011, 8, 557–561. [Google Scholar] [CrossRef]
- Lang, H.; Zhang, J.; Wang, Y.; Zhang, X.; Meng, J. A synthetic aperture radar sea background distribution estimation by n-order Bézier curve and its application in ship detection. Acta Oceanol. Sin. 2016, 35, 117–125. [Google Scholar] [CrossRef]
- Tian, S.R.; Wang, C.; Zhang, H. An improved nonparametric CFAR method for ship detection in single polarization synthetic aperetuer radar imagery. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS 2016), Beijing, China, 10–15 July 2016; pp. 6637–6640. [Google Scholar]
- Wang, C.; Bi, F.; Zhang, W.; Chen, L. An Intensity-Space Domain CFAR Method for Ship Detection in HR SAR Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 529–533. [Google Scholar] [CrossRef]
- Dai, H.; Du, L.; Wang, Y.; Wang, Z. A modified CFAR algorithm based on object proposals for ship target detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1925–1929. [Google Scholar] [CrossRef]
- Zhai, L.; Li, Y.; Su, Y. Inshore Ship Detection via Saliency and Context Information in High-Resolution SAR Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1870–1874. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Yang, S.; Jiao, L. New hierarchical saliency filtering for fast ship detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 351–362. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C. Adaptive ship detection in SAR images using variance WIE-based method. Signal Image Video Process. 2016, 10, 1219–1224. [Google Scholar] [CrossRef]
- Wang, X.; Chen, C. Ship detection for complex background SAR images based on a multiscale variance weighted image entropy method. IEEE Geosci. Remote Sens. Lett. 2017, 14, 184–187. [Google Scholar] [CrossRef]
- Bentes, C.; Frost, A.; Velotto, D.; Tings, B. Ship-iceberg discrimination with convolutional neural networks in high resolution SAR images. In Proceedings of the 11th European Conference on Synthetic Aperture Radar (EUSAR 2016), Hamburg, Germany, 6–9 June 2016; pp. 1–4. [Google Scholar]
- Schwegmann, C.P.; Kleynhans, W.; Salmon, B.P.; Mdakane, L.W.; Meyer, R.G. Very deep learning for ship discrimination in synthetic aperture radar imagery. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS 2016), Beijing, China, 10–15 July 2016; pp. 104–107. [Google Scholar]
- Kang, M.; Leng, X.; Lin, Z.; Ji, K. A modified faster R-CNN based on CFAR algorithm for SAR ship detection. In Proceedings of the IEEE 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP 2017), Shanghai, China, 18–21 May 2017; pp. 1–4. [Google Scholar]
- Massonnet, D.; Souyris, J.C. Imaging with Synthetic Aperture Radar; CRC Press: Lausanne, Switzerland, 2008. [Google Scholar]
- Hao, S.; Liang, C.; Yin, Z.; Jian, Y.; Zhu, Y. A Novel Method of Speckle Reduction and Enhancement for SAR Image. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS 2017), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; pp. 511–518. [Google Scholar]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Lienhart, R.; Maydt, J. An extended set of haar-like features for rapid object detection. In Proceedings of the 2002 IEEE International Conference on Image Processing (ICIP 2002), Rochester, NY, USA, 22–25 September 2002; pp. 1–4. [Google Scholar]
- Beylkin, G. Discrete radon transform. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 162–172. [Google Scholar] [CrossRef]
- Zhang, Q.J. System design and key technologies of the GF-3 satellite. Acta Geod. Cartogr. Sin. 2017, 46, 269–277. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Leng, X.; Ji, K.; Yang, K.; Zou, H. A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1536–1540. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, S.; Zhang, H.; Wu, F.; Zhang, B. Ship detection for high-resolution SAR images based on feature analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 119–123. [Google Scholar] [CrossRef]
Imaging Mode | Spatial Resolution (m) | Nominal Width (km) | Polarization Mode | ||
---|---|---|---|---|---|
Nominal | Azimuth | Range | |||
Spotlight | 1 | 1.0–1.5 | 0.9–2.5 | 10 × 10 | optional single-pol |
Ultra-fine stripmap | 3 | 3 | 2.5–5 | 30 | optional single-pol |
Fine stripmap 1 | 5 | 5 | 4–6 | 50 | optional dual-pol |
Imaging | Original | Filtered | ||||
---|---|---|---|---|---|---|
Mean | Var | ENL | Mean | Var | ENL | |
Patch 1 | 0.153 | 0.074 | 4.228 | 0.155 | 0.012 | 163.375 |
Patch 2 | 0.218 | 0.176 | 2.570 | 0.219 | 0.158 | 2.365 |
Patch 3 | 0.645 | 0.280 | 5.302 | 0.584 | 0.182 | 10.271 |
Patch 4 | 0.563 | 0.303 | 3.460 | 0.526 | 0.195 | 7.254 |
No. | Patch 1 | Patch 2 | Correlation Coefficients | ||
---|---|---|---|---|---|
Edge | Line | Center | |||
1 | 0.9723 | 0.9554 | 0.9910 | ||
2 | 0.8326 | 0.7530 | 0.7694 | ||
3 | 0.4728 | 0.2898 | 0.9647 | ||
4 | 0.0446 | 0.0725 | 0.9158 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Zhang, Q.; Bian, M.; Wang, H.; Wang, Z.; Chen, L.; Yang, J. A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery. Sensors 2018, 18, 563. https://doi.org/10.3390/s18020563
Shi H, Zhang Q, Bian M, Wang H, Wang Z, Chen L, Yang J. A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery. Sensors. 2018; 18(2):563. https://doi.org/10.3390/s18020563
Chicago/Turabian StyleShi, Hao, Qingjun Zhang, Mingming Bian, Hangyu Wang, Zhiru Wang, Liang Chen, and Jian Yang. 2018. "A Novel Ship Detection Method Based on Gradient and Integral Feature for Single-Polarization Synthetic Aperture Radar Imagery" Sensors 18, no. 2: 563. https://doi.org/10.3390/s18020563