An Improved Coarse Alignment Algorithm for Odometer-Aided SINS Based on the Optimization Design Method
<p>The block diagram of the proposed ICA algorithm.</p> "> Figure 2
<p>The true velocity profile of the simulation test.</p> "> Figure 3
<p>The attitude angle error of the simulation.</p> "> Figure 4
<p>The attitude angle errors of 50 coarse alignments. The abscissa denotes the order <math display="inline"> <semantics> <mi mathvariant="normal">N</mi> </semantics> </math> of the alignments, and the ordinate denotes the errors of the pitch angle, roll angle and heading angle, respectively.</p> "> Figure 5
<p>The FSINS and PHINS for the experiment.</p> "> Figure 6
<p>Velocity profile for four segments.</p> ">
Abstract
:1. Introduction
2. OBA Algorithm for Odometer-Aided SINS
3. ICA Algorithm for Odometer-Aided SINS
4. Simulation and Test
4.1. Simulation Results
4.2. Test Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tang, Y.; Wu, Y.; Wu, M.; Wu, W.; Hu, X.; Shen, L. INS/GPS Integration: Global Observability Analysis. IEEE. Trans. Veh. Technol. 2009, 58, 1129–1142. [Google Scholar] [CrossRef]
- Huang, W.; Fang, T.; Luo, L.; Zhao, L.; Che, F. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions. Sensors 2017, 17, 1551. [Google Scholar]
- Zhang, Y.; Huang, Y.; Wu, Z.; Li, N. Moving State Marine SINS Initial Alignment Based on High Degree CKF. Math. Probl. Eng. 2014, 2014, 546107. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y. A New Process Uncertainty Robust Student’s t based Kalman Filter for SINS/GPS Integration. IEEE Access 2017, 5, 14391–14404. [Google Scholar] [CrossRef]
- Lu, J.; Lei, C.; Li, B.; Wen, T. Improved calibration of IMU biases in analytic coarse alignment for AHRS. Meas. Sci. Technol. 2016, 27, 075105. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Wang, X. Kalman-Filtering-Based In-Motion Coarse Alignment for Odometer-Aided SINS. IEEE Trans. Instrum. Meas. 2017, PP, 1–14. [Google Scholar] [CrossRef]
- Shuster, M.D.; Oh, S.D. Three-axis attitude determination from vector observations. J. Guid. Control Dyn. 1981, 4, 70–77. [Google Scholar] [CrossRef]
- Jiang, Y.F. Error analysis of analytic coarse alignment methods. IEEE. Trans. Aerosp. Electron. Syst. 1998, 34, 334–337. [Google Scholar] [CrossRef]
- Tan, C.; Zhu, X.; Su, Y.; Wang, Y.; Wu, Z.; Gu, D. A New Analytic Alignment Method for a SINS. Sensors 2015, 15, 27930–27953. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fang, J.; Du, M. Error Analysis and Gyro-Bias Calibration of Analytic Coarse Alignment for Airborne POS. IEEE Trans. Instrum. Meas. 2012, 61, 3058–3064. [Google Scholar]
- Zhou, W.D.; Ma, H.; Ji, Y.R.; Song, J.L. Coarse Alignment for SINS Using Gravity in the Inertial Frame Based on Attitude Quaternion. Appl. Mech. Mater. 2013, 244, 413–417. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, Y.; Zhou, F.; Yan, Y.; Tong, J. Coarse Alignment Technology on Moving Base for SINS Based on the Improved Quaternion Filter Algorithm. Sensors 2017, 17, 1424. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, W.; Lu, J.W.L. A Fast SINS Initial Alignment Scheme for Underwater Vehicle Applications. J. Navig. 2013, 66, 181–198. [Google Scholar] [CrossRef]
- Wu, M.; Wu, Y.; Hu, X.; Hu, D. Optimization-based alignment for inertial navigation systems: Theory and algorithm. Aerosp. Sci. Technol. 2011, 15, 1–17. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, X. Velocity/Position Integration Formula Part I: Application to In-Flight Coarse Alignment. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1006–1023. [Google Scholar] [CrossRef]
- Chang, L.; Li, J.; Chen, S. Initial Alignment by Attitude Estimation for Strapdown Inertial Navigation Systems. IEEE Trans. Instrum. Meas. 2015, 64, 784–794. [Google Scholar] [CrossRef]
- Chang, L.; Li, J.; Li, K. Optimization-based alignment for strapdown inertial navigation system: Comparison and extension. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1697–1713. [Google Scholar] [CrossRef]
- Chang, L.; Qin, F.; Li, A. A Novel Backtracking Scheme for Attitude Determination-Based Initial Alignment. IEEE Trans. Autom. Sci. Eng. 2015, 12, 384–390. [Google Scholar] [CrossRef]
- Kang, L.; Ye, L.; Song, K. A fast in-motion alignment algorithm for DVL aided SINS. Math. Probl. Eng. 2014, 2014, 593692. [Google Scholar] [CrossRef]
- Chang, L.; He, H.; Qin, F. In-motion Initial Alignment for Odometer Aided Strapdown Inertial Navigation System based on Attitude Estimation. IEEE Sens. J. 2017, 17, 766–773. [Google Scholar] [CrossRef]
- Chang, L.; Li, Y.; Xue, B. Initial Alignment for Doppler Velocity Log aided Strapdown Inertial Navigation System with Limited Information. IEEE ASME Trans. Mechatron. 2017, 22, 329–338. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
Initial longitude | |
Initial latitude L | |
Fiber-optic gyroscope drift | |
Fiber-optic gyroscope noise | |
Accelerometer bias | |
Accelerometer noise | |
odometer noise |
Attitude Angle | Method | Maximum Error | Mean Error | Standard Deviation |
---|---|---|---|---|
Pitch | TIFCA | |||
OBA | ||||
ICA | ||||
Roll | TIFCA | |||
OBA | ||||
ICA | ||||
Heading | TIFCA | |||
OBA | ||||
ICA |
Index | Accuracy |
---|---|
Heading, Roll, Pitch resolution | |
Heading, Roll, Pitch dynamic accuracy | |
Saturation of the speed | |
Speed accuracy | |
The position error of GPS receiver | ≤10 m |
Data | TIFCA | OBA | ICA |
---|---|---|---|
Segment 1 | |||
Segment 2 | |||
Segment 3 | |||
Segment 4 |
Data | TIFCA | OBA | ICA |
---|---|---|---|
Segment 1 | |||
Segment 2 | |||
Segment 3 | |||
Segment 4 |
Data | TIFCA | OBA | ICA |
---|---|---|---|
Segment 1 | |||
Segment 2 | |||
Segment 3 | |||
Segment 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Luo, L.; Fang, T.; Li, N.; Wang, G. An Improved Coarse Alignment Algorithm for Odometer-Aided SINS Based on the Optimization Design Method. Sensors 2018, 18, 195. https://doi.org/10.3390/s18010195
Zhang Y, Luo L, Fang T, Li N, Wang G. An Improved Coarse Alignment Algorithm for Odometer-Aided SINS Based on the Optimization Design Method. Sensors. 2018; 18(1):195. https://doi.org/10.3390/s18010195
Chicago/Turabian StyleZhang, Yonggang, Li Luo, Tao Fang, Ning Li, and Guoqing Wang. 2018. "An Improved Coarse Alignment Algorithm for Odometer-Aided SINS Based on the Optimization Design Method" Sensors 18, no. 1: 195. https://doi.org/10.3390/s18010195