Camera Calibration Robust to Defocus Using Phase-Shifting Patterns
<p>The phase-shifting circular patterns. (<b>a</b>–<b>c</b>) Images of the 4 × 4 PCG array patterns; (<b>d</b>) Wrapped phase of single PCG.</p> "> Figure 2
<p>The map of the feature detection of the proposed method.</p> "> Figure 3
<p>The schemes of the sorting algorithm. (<b>a</b>) To solve B and D using the straight line <span class="html-italic">l</span><sub>0</sub> and the final point C using the straight <span class="html-italic">l</span><sub>1</sub>; (<b>b</b>) Reordering the vertexes and labeling the feature points.</p> "> Figure 4
<p>Errors regarding the number of PCGs. (<b>a</b>) Relative error for focal length; (<b>b</b>) Absolute error for principal point; (<b>c</b>) RMSEs with different number of PCGs.</p> "> Figure 5
<p>Errors regarding the period of PCG. (<b>a</b>) Relative error for focal length; (<b>b</b>) Absolute error for principal point; (<b>c</b>) RMSEs with different periods of PCG.</p> "> Figure 6
<p>Errors regarding the noise level of the patterns. (<b>a</b>) Relative error for focal length; (<b>b</b>) Absolute error for principal point; (<b>c</b>) RMSEs with different noise levels.</p> "> Figure 7
<p>Set up of the real experiment.</p> "> Figure 8
<p>Captured images of different rotation angle and the images of enlarged region of PCG center. (<b>a</b>–<b>c</b>) The images of 15°, 30° and 45° respectively; (<b>d</b>–<b>f</b>) The enlarged region of PCG center of 15°, 30° and 45° respectively.</p> "> Figure 9
<p>The captured images of different defocus degrees. (<b>a</b>–<b>c</b>) The images of PCG arrays of different defocus degrees respectively; (<b>d</b>–<b>f</b>) The images of concentric circle array of different defocus degrees respectively.</p> "> Figure 10
<p>Wrapped phase with the calculated imaged centers of different defocus degrees. (<b>a</b>–<b>c</b>) The wrapped phase of <a href="#sensors-17-02361-f009" class="html-fig">Figure 9</a>a–c respectively.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Camera Model
2.2. Circle Projection Model
2.3. Pole-Polar Relationship
2.4. Circle Center Estimation
3. Proposed Method
3.1. Phase-Shifting Pattern
3.2. Feature Detection
3.3. Sorting Feature Points
- First of all, the centroid Z of those feature points is computed and the Euclidean distance between Z and the feature points can be used to identify one vertex. Meanwhile, the feature point whose distance is the longest can be regarded as the vertex, let it be A. Using point A and Z as the inputs, we can obtain a straight line .
- We define , and is the coordinate of the feature point. The coordinate of each feature point is substituted into the equation to compute . The is a signed float value, thus its maximum and minimum can be directly determined which point is B and D, respectively.
- We can obtain another straight line connecting point B and D. Repeating the step 2, can be calculated to locate the point C. Once the four vertexes are determined, we compute the sum of the row and column of each vertex. The minimum and maximum of the sum represent the upper-left point A and the down-right point C respectively. Then, the order of the vertexes can be refined.
4. Experiments and Results
4.1. Experiment on Simulated Images
4.2. Experiment on Real Images
4.2.1. Accuracy Verification Experiment
4.2.2. Contrast Experiment with the Concentric Circle Array
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yu, F.; Gallup, D. 3D Reconstruction from accidental motion. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 3986–3993. [Google Scholar]
- Yoon, K.J.; Kweon, I.S. Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Royer, E.; Lhuillier, M.; Dhome, M.; Lavest, J.M. Monocular vision for mobile robot localization and autonomous navigation. Int. J. Comput. Vis. 2007, 74, 237–260. [Google Scholar] [CrossRef]
- Wilczkowiak, B.M.; Sturm, P.; Boyer, E. Using geometric constraints through parallelepipeds for calibration and 3D modeling. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Tsai, R.Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 1987, 3, 323–344. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Zhang, Z. Camera calibration with one-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hu, Z.Y.; Zhu, H.J. Camera calibration with moving one-dimensional objects. Pattern Recognit. 2005, 38, 755–765. [Google Scholar] [CrossRef]
- Pollefeys, M.; Koch, R.; Gool, L.V. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In Proceedings of the 1998 Sixth IEEE International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 90–95. [Google Scholar]
- Tan, L.; Wang, Y.; Yu, H.S.; Zhu, J. Automatic camera calibration using active displays of a virtual pattern. Sensors 2017, 17, 685. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, Q.; Chen, X.; Yin, Y. High-accuracy calibration of low-cost camera using image disturbance factor. Opt. Express 2016, 24, 24321–24336. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, J. Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1066–1077. [Google Scholar] [CrossRef]
- Tarel, P.J.; Gagalowicz, A. Calibration de caméra à base d’ellipses. Trait. Signal 1995, 12, 177–187. [Google Scholar]
- Li, D.; Tian, J. An accurate calibration method for a camera with telecentric lenses. Opt. Lasers Eng. 2013, 51, 538–541. [Google Scholar] [CrossRef]
- Kim, J.S.; Gurdjos, P.; Kweon, I.S. Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 637–642. [Google Scholar] [PubMed]
- Kim, J.S.; Kim, H.W.; Kweon, I.S. A camera calibration method using concentric circles for vision applications. In Proceedings of the Fifth Asian Conference on Computer Vision, Melbourne, Australia, 23–25 January 2002; pp. 23–25. [Google Scholar]
- Kim, J.S.; Kweon, I.S. A new camera calibration method for robotic applications. In Proceedings of the 2001 IEEE International Conference on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; pp. 778–783. [Google Scholar]
- Zhang, B.W.; Li, Y.F.; Chen, S.Y. Concentric-circle-based camera calibration. IET Image Process. 2012, 6, 870–876. [Google Scholar] [CrossRef]
- Chen, X.Y.; Hu, Y.; Ma, Z.; Yu, S.; Chen, Y. The location and identification of concentric circles in automatic camera calibration. Opt. Laser Technol. 2013, 54, 185–190. [Google Scholar] [CrossRef]
- Yang, S.; Liu, M.; Yin, S.; Guo, Y.; Ren, Y.; Zhu, J. An improved method for location of concentric circles in vision measurement. Measurement 2017, 100, 243–251. [Google Scholar] [CrossRef]
- Bell, T.; Xu, J.; Zhang, S. Method for out-of-focus camera calibration. Appl. Opt. 2016, 55, 2346–2352. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Bell, T.; Li, B.; Xu, J.; Zhang, S. Method for large-range structured light system calibration. Appl. Opt. 2016, 55, 9563–9572. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, A.C.; Forster, F.; Angelopoulou, E. Camera calibration: Active versus passive targets. Opt. Eng. 2011, 50, 828–832. [Google Scholar]
- Huang, L.; Zhang, Q.; Asundi, A. Camera calibration with active phase target: Improvement on feature detection and optimization. Opt. Lett. 2013, 38, 1446–1448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Chen, X.C.; Tao, J.Y.; Wang, K.Y.; Ma, M.C. Accurate feature detection for out-of-focus camera calibration. Appl. Opt. 2016, 55, 7964–7971. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Cai, B.L.; Wang, K.Y.; Chen, X.C. Out-of-focus color camera calibration with one normal-sized color-coded pattern. Opt. Lasers Eng. 2017, 98, 17–22. [Google Scholar] [CrossRef]
- Huang, P.S.; Zhang, S. Fast three-step phase-shifting algorithm. Appl. Opt. 2005, 41, 4503–4509. [Google Scholar] [CrossRef]
- Conomis, C. Conics-based homography estimation from invariant points and pole-polar relationships. In Proceedings of the 2006 International Conference on 3D Data Processing, Visualization and Transmission, Chapel Hill, NC, USA, 14–16 June 2006; pp. 908–915. [Google Scholar]
- Huang, H.; Zhang, H.; Cheung, Y. The common self-polar triangle of concentric circles and its application to camera calibration. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4065–4072. [Google Scholar]
- Lu, L.; Xi, J.; Yu, Y. Shadow removal method for phase-shifting profilometry. Appl. Opt. 2015, 54, 6059–6064. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Su, X.Y.; Xiang, L.; Chen, W. Using concentric circles and wedge grating for camera calibration. Appl. Opt. 2012, 51, 3811–3816. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Hu, Z. A new easy camera calibration technique based on circular points. Pattern Recognit. 2002, 36, 1155–1164. [Google Scholar] [CrossRef]
- Fitzgibbon, A.; Pilu, M.; Fisher, R.B. Direct least square fitting of ellipses. Pattern Anal. Mach. Intell. 1999, 21, 476–480. [Google Scholar] [CrossRef]
- Bouguet, J.-Y. Camera Calibration Toolbox for Matlab. Available online: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html (accessed on 20 July 2017) .
Pattern | fu | fv | u0 | v0 | k1 | k2 | RMSE | |
---|---|---|---|---|---|---|---|---|
Trial 1 | PCG arrays | 2748.012 | 2747.892 | 982.443 | 616.473 | −0.010 | 0.099 | 0.045 |
Concentric circle array | 2745.681 | 2745.370 | 982.433 | 615.732 | −0.012 | 0.103 | 0.054 | |
Trial 2 | PCG arrays | 2732.675 | 2732.785 | 980.751 | 615.591 | −0.012 | 0.105 | 0.048 |
Concentric circle array | 2721.353 | 2720.358 | 972.573 | 609.420 | −0.041 | 0.182 | 0.136 | |
Trial 3 | PCG arrays | 2674.015 | 2674.918 | 974.139 | 614.406 | −0.047 | 0.174 | 0.057 |
Concentric circle array | 2680.222 | 2678.179 | 974.413 | 616.083 | −0.060 | 0.243 | 0.179 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, B.; Wang, Y.; Wang, K.; Ma, M.; Chen, X. Camera Calibration Robust to Defocus Using Phase-Shifting Patterns. Sensors 2017, 17, 2361. https://doi.org/10.3390/s17102361
Cai B, Wang Y, Wang K, Ma M, Chen X. Camera Calibration Robust to Defocus Using Phase-Shifting Patterns. Sensors. 2017; 17(10):2361. https://doi.org/10.3390/s17102361
Chicago/Turabian StyleCai, Bolin, Yuwei Wang, Keyi Wang, Mengchao Ma, and Xiangcheng Chen. 2017. "Camera Calibration Robust to Defocus Using Phase-Shifting Patterns" Sensors 17, no. 10: 2361. https://doi.org/10.3390/s17102361
APA StyleCai, B., Wang, Y., Wang, K., Ma, M., & Chen, X. (2017). Camera Calibration Robust to Defocus Using Phase-Shifting Patterns. Sensors, 17(10), 2361. https://doi.org/10.3390/s17102361