The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System
<p>Omni-directional mobile robot RedwallBot-1.</p> "> Figure 2
<p>Modular wheel structure with suspension. (<b>a</b>) The components of the modular wheel; (<b>b</b>) 3D model of the modular wheel.</p> "> Figure 3
<p>The mechanical components of the robot body. (<b>a</b>) 3D model of the mobile body; (<b>b</b>) three independent layers.</p> "> Figure 4
<p>Block diagram of RedwallBot-1’s control system.</p> "> Figure 5
<p>Assignment of the on-board sensors.</p> "> Figure 6
<p>Schematic diagram of the control software.</p> "> Figure 7
<p>The distribution of the four wheels and their movements.</p> "> Figure 8
<p>The main equipment of the intelligent manufacturing system. (<b>a</b>) Stero warehouse; (<b>b</b>) CNC lathes and gantry manipulator; (<b>c</b>) industrial robot and milling machine.</p> "> Figure 9
<p>The sequential movement process of the workpieces in the system.</p> "> Figure 10
<p>Flow chart of the mobile robot localization and mapping.</p> "> Figure 11
<p>Motion trajectory error when the robot moves along a square.</p> "> Figure 12
<p>Vibration curves under different moving modes. (<b>a</b>) Longitudinal movement; (<b>b</b>) rotational movement.</p> "> Figure 13
<p>Localization and mapping in the production line.</p> "> Figure 14
<p>The comparison between estimated and real positions.</p> ">
Abstract
:1. Introduction
2. Mechanical System of the Mobile Robot
2.1. Modular Wheel Structure
2.2. Multi-Layer Mechanical Modules
3. The Control System of the Mobile Robot
3.1. Control Hardware
3.2. Perception
3.3. Software Architecture
3.3.1. Lower-Level Software
3.3.2. Higher-Level Software
3.4. Integration with an Intelligent Manufacturing System
4. Mobile Robot Localization
4.1. Status Prediction
4.2. Measurement Update
5. Experiments and Discussion
5.1. Mobility and Stability Tests
5.2. Localization and Mapping Experiments
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Erico, G. Three Engineers, Hundreds of Robots, One Warehouse. IEEE Spectr. 2008, 45, 26–34. [Google Scholar]
- Bøgh, S.; Schou, C.; Rühr, T. Integration and Assessment of Multiple Mobile Manipulators in a Real-World Industrial Production Facility. In Proceedings of the 45th International Symposium on Robotics, Munich, Germany, 2–3 June 2014; pp. 1–8. [Google Scholar]
- Bourne, D.; Choset, H.; Hu, H.; Kantor, G.; Niessl, C.; Rubinstein, Z.; Simmons, R.; Smith, S. Mobile Manufacturing of Large Structures. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1565–1572. [Google Scholar]
- Kraetzschmar, G.K.; Hochgeschwender, N.; Nowak, W. RoboCup@Work: Competing for the Factory of the Future. Lect. Notes Comput. Sci. 2014, 8992, 171–182. [Google Scholar]
- Ullrich, G. Automated Guided Vehicle Systems: A Primer with Practical Applications; Springer: Berlin/ Heidelberg, Germany, 2015. [Google Scholar]
- Zeng, J.J.; Yang, R.Q.; Zhang, W.J.; Weng, X.H.; Qian, J. Research on Semi-automatic Bomb Fetching for an EOD Robot. Int. J. Adv. Robot. Syst. 2007, 4, 247–252. [Google Scholar]
- Shneier, M.; Bostelman, R. Literature Review of Mobile Robots for Manufacturing; NISTIR 8022; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [CrossRef]
- Batlle, J.A.; Barjau, A. Holonomy in mobile robots. Robot. Auton. Syst. 2009, 57, 433–440. [Google Scholar] [CrossRef]
- Oftadeh, R.; Aref, M.M.; Ghabcheloo, R.; Mattila, J. System Integration for Real-time Mobile Manipulation. Int. J. Adv. Robot. Syst. 2014, 11. [Google Scholar] [CrossRef]
- Indiveri, G. Swedish Wheeled Omnidirectional Mobile Robots: Kinematics Analysis and Control. IEEE Trans. Robot. 2009, 25, 164–171. [Google Scholar] [CrossRef]
- Kanjanawanishkul, K. Omnidirectional Wheeled Mobile Robots: Wheel Types and Practical Applications. Int. J. Adv. Mechatron. Syst. 2015, 6, 289–302. [Google Scholar] [CrossRef]
- Han, K.L.; Kim, H.; Lee, J.S. The sources of position errors of omni-directional mobile robot with Mecanum wheel. In Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 581–586. [Google Scholar]
- Herrero-Pérez, D.; Alcaraz-Jiménez, J.J.; Martínez-Barberá, H. An accurate and robust flexible guidance system for indoor industrial environments. Int. J. Adv. Robot. Syst. 2013, 10. [Google Scholar] [CrossRef]
- Yoon, S.W.; Park, S.B.; Kim, J.S. Kalman Filter Sensor Fusion for Mecanum Wheeled Automated Guided Vehicle Localization. J. Sens. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Röhrig, C.; Heller, A.; Heß, D.; Kuenemund, F. Global Localization and Position Tracking of Automatic Guided Vehicles using Passive RFID Technology. In Proceedings of the Joint 45th International Symposium on Robotics, Munich, Germany, 2–3 June 2014; pp. 401–408. [Google Scholar]
- Kim, J.; Woo, S.; Kim, J.; Do, J.; Kim, S. Inertial Navigation System for an Automatic Guided Vehcile with Mecanum Wheels. Int. J. Precis. Eng. Manuf. 2012, 13, 379–386. [Google Scholar] [CrossRef]
- Brunetto, N.; Salti, S.; Fioraio, N.; Cavallari, T.; Di Stefano, L. Fusion of Inertial and Visual Measurements for RGB-D SLAM on Mobile Devices. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 7–13 December 2015; pp. 148–156. [Google Scholar]
- Tsai, C.C.; Tai, F.C.; Wang, Y.C. Global Localization using Dead-reckoning and Kinect Sensors for Robots with Omnidirectional Mecanum Wheels. J. Mar. Sci. Technol. 2014, 22, 321–330. [Google Scholar]
- Rowekamper, J.; Sprunk, C.; Tipaldi, G.D.; Stachniss, C.; Pfaff, P.; Burgard, W. On the Position Accuracy of Mobile Robot Localization based on Particle Filters Combined with Scan Matching. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 3158–3164. [Google Scholar]
- Thoben, K.D.; Wiesner, S.; Wuest, T. “Industrie 4.0” and Smart Manufacturing—A Review of Research Issues and Application Examples. Int. J. Autom. Technol. 2017, 11, 4–17. [Google Scholar] [CrossRef]
- Puerto, M.J.; Salle, D.; Outon, J.L.; Herrero, H.; Lizuain, Z. Towards a Flexible Production—System Environment Server Implementation. In Proceedings of the 16th International Conference on Computer as a Tool, Salamanca, Spain, 8–11 September 2015. [Google Scholar] [CrossRef]
- Baglio, S.; Castorina, S.; Fortuna, L.; Herrero, H.; Lizuain, Z. Modeling and Design of Novel Photo-thermo-mechanical Microactuators. Sens. Actuators A Phys. 2002, 101, 185–193. [Google Scholar] [CrossRef]
- Peng, T.R.; Qian, J.; Zi, B.; Liu, J.; Wang, X. Mechanical Design and Control System of an Omni-directional Mobile Robot for Material Conveying. Procedia CIRP 2016, 56, 412–415. [Google Scholar] [CrossRef]
- Bae, J.J.; Kang, N. Design Optimization of a Mecanum Wheel to Reduce Vertical Vibrations by the Consideration of Equivalent Stiffness. Shock Vib. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Roh, S.G.; Lim, B. Flexible Suspension Mechanism for Stable Diving of a Differential Drive Mobile Robot. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 5518–5523. [Google Scholar]
- Zi, B.; Lin, J.; Qian, S. Localization, Obstacle Avoidance Planning and Control of Cooperative Cable Parallel Robots for Multiple Mobile Cranes. Robot. Comput. Integr. Manuf. 2015, 34, 105–123. [Google Scholar] [CrossRef]
- Zi, B.; Duan, B.Y.; Du, J.L.; Bao, H. Dynamic Modeling and Active Control of a Cable-Suspended Parallel Robot. Mechatronics 2008, 18, 1–12. [Google Scholar] [CrossRef]
- Zi, B.; Sun, H.H.; Zhang, D. Design, Analysis and Control of a Winding Hybrid-Driven Cable Parallel Manipulator. Robot. Comput. Integr. Manuf. 2017, 48, 196–208. [Google Scholar]
- Heß, D.; Künemund, F.; Röhrig, C. Linux Based Control Framework for Mecaum Based Omnidirectional Automated Guided Vehicles. In Proceedings of the World Congress on Engineering and Computer Science 2013, San Francisco, CA, USA, 23–25 October 2013; pp. 395–400. [Google Scholar]
- Quigley, M.; Gerkey, B.; Smart, W.D. Programming Robots with ROS: A Practical Introduction to the Robot Operating System; O’Reilly Media: Sebastopol, CA, USA, 2015. [Google Scholar]
- Unified Architecture. Available online: https://opcfoundation.org/about/opc-technologies/opc-ua (accessed on 1 January 2017).
- Ros_Opcua_Communication. Available online: http://wiki.ros.org/ros_opcua_communication (accessed on 19 December 2016).
- Welch, G.; Bishop, G. An Introduction to the Kalman Filter; TR95-041; ACM: New York, NY, USA, 2001. [Google Scholar]
- Qian, J.; Zhu, H.B.; Wang, S.W.; Zeng, Y.S. Fast Reconstruction of an Unmanned Engineering Vehicle and its Application to Carrying Rocket. IET J. Eng. 2014. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up Robust Features. Lect. Notes Comput. Sci. 2006, 3591, 404–417. [Google Scholar]
- Mjua, M.; Lowe, D.G. Fast Approximate nearest neighbors with automatic algorithm configuration. In Proceedings of the 4th International Conference on Computer Vision Theory and Applications, Lisboa, Portugal, 5–8 February 2009; pp. 331–340. [Google Scholar]
- Li, S.Q.; Xu, C.; Xie, M. A Robust O(n) Solution to the Perspective-n-Point Problem. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Besl, P.J.; McKay, H.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Kummerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A General Framework for Graph Optimization. In Proceedings of the 2011 IEEE/RSJ International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 3607–3613. [Google Scholar]
Description | Quantity |
---|---|
Mobile Body Length | 760 mm |
Mobile Body Width | 500 mm |
Mobile Body Height | 600 mm |
Wheel Diameter | 200 mm |
Max. Velocity of the Body | 1.4 m/s |
Max. Rotational Velocity of the Body | 3.0 rad/s |
Mass of the Mobile Body | 80 kg |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Zi, B.; Wang, D.; Ma, Y.; Zhang, D. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System. Sensors 2017, 17, 2073. https://doi.org/10.3390/s17092073
Qian J, Zi B, Wang D, Ma Y, Zhang D. The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System. Sensors. 2017; 17(9):2073. https://doi.org/10.3390/s17092073
Chicago/Turabian StyleQian, Jun, Bin Zi, Daoming Wang, Yangang Ma, and Dan Zhang. 2017. "The Design and Development of an Omni-Directional Mobile Robot Oriented to an Intelligent Manufacturing System" Sensors 17, no. 9: 2073. https://doi.org/10.3390/s17092073