A Sequential Optimization Calibration Algorithm for Near-Field Source Localization
<p>Diagram showing narrow-band non-ULA architecture.</p> "> Figure 2
<p>Average estimation values of the range and the azimuth of calibration source versus different experiments, (<b>a</b>) range; (<b>b</b>) azimuth.</p> "> Figure 3
<p>RMSEs of gain and phase errors versus different experiments, (<b>a</b>) gain error; (<b>b</b>) phase error.</p> "> Figure 4
<p>Two-dimensional MVDR spatial spectrums for three calibration sources, (<b>a</b>) before calibration; (<b>b</b>) after calibration.</p> "> Figure 5
<p>Estimation values of range and azimuth of calibration sources versus different Monte Carlo trials, (<b>a</b>) range; (<b>b</b>) azimuth.</p> "> Figure 6
<p>Two-dimensional MVDR spatial spectrums for four sources with the same SNR = 20 dB, (<b>a</b>) before calibration; (<b>b</b>) after calibration.</p> "> Figure 7
<p>One-dimensional MVDR spatial spectrums for a source with estimated location <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>1251</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mo>-</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> <mo>)</mo> </mrow> </semantics> </math> under SNR = 20 dB, (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mo>-</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1251</mn> </mrow> </semantics> </math> m.</p> "> Figure 8
<p>Two-dimensional MVDR spatial spectrums for four sources with different SNRs, (<b>a</b>) before calibration; (<b>b</b>) after calibration.</p> "> Figure 9
<p>One-dimensional MVDR spatial spectrums for a source with estimated location <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>1251</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">m</mi> <mo>,</mo> <mo>-</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> <mo>)</mo> </mrow> </semantics> </math> under SNR = 10 dB, (<b>a</b>) <math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mo>-</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1251</mn> </mrow> </semantics> </math> m.</p> ">
Abstract
:1. Introduction
2. Signal Model
- is the measurement signal vector;
- is an independent and identically distributed complex circular zero-mean Gaussian random vector with covariance matrix , while is the M-dimensional identity matrix;
- is the nominal steering matrix, the p-th column isTo simplify the notation, we write into .
- is the error matrix of the array gain and phase, where parameters and are the gain and the phase errors associated with the m-th sensor, respectively.
3. Near-Field Calibration Method
3.1. Joint Estimations of Error Matrix and Azimuthes with Known Ranges
Algorithm 1 Algorithm for the joint estimations of and . |
|
3.2. Joint Estimations of Error Matrix and Ranges with Known Azimuths
Algorithm 2 Algorithm for the joint estimations of and |
|
3.3. Joint Estimations of Error Matrix, Azimuths and Ranges
Algorithm 3 Algorithm for the joint estimation of and |
|
4. Numerical Results
4.1. The Joint Estimations of the Array Gain and Phase Errors and Source Locations
4.2. Array Gain and Phase Error Compensation for Near-Field Source Localization
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, J.C.; Yao, K.; Hudson, R.E. Source localization and beamforming. IEEE Signal Process. Mag. 2002, 19, 30–39. [Google Scholar] [CrossRef]
- Parr, A.; Miesen, R.; Vossiek, M. Comparison of phase-based 3D near-field source localization techniques for UHF RFID. Sensors 2016, 16, 978. [Google Scholar] [CrossRef] [PubMed]
- Tiete, J.; Dominguez, F.; Silva, B.D.; Segers, L.; Steenhaut, K.; Touhafi, A. SoundCompass: A distributed MEMS microphone array-based sensor for sound source localization. Sensors 2014, 14, 1918–1949. [Google Scholar] [CrossRef] [PubMed]
- Cobos, M.; Perez-Solano, J.J.; Felici-Castell, S.; Segura, J.; Navarro, J.M. Cumulative-Sum-Based Localization of Sound Events in Low-Cost Wireless Acoustic Sensor Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1792–1802. [Google Scholar] [CrossRef]
- Canclini, A.; Antonacci, E.; Sarti, A.; Tubaro, S. Acoustic source localization with distributed asynchronous microphone networks. IEEE Trans. Audio Speech Lang. Process. 2013, 21, 439–443. [Google Scholar] [CrossRef]
- Meng, W.; Xiao, W. Energy-Based Acoustic Source Localization Methods: A Survey. Sensors 2017, 21, 376. [Google Scholar] [CrossRef] [PubMed]
- Krim, H.; Viber, M. Two Decades of Array Signal Processing Research: The Parametric Approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Aerosp. Electron. Syst. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Cobos, M.; Marti, A.; Lopez, J.J. A Modified SRP-PHAT Functional for Robust Real-Time Sound Source Localization With Scalable Spatial Sampling. IEEE Signal Proc. Lett. 2011, 18, 71–74. [Google Scholar] [CrossRef]
- DiBiase, J.H. A High Accuracy, Low-Latency Technique for Talker Localization in Reverberant Environments using Microphone Arrays. Ph.D. Thesis, Brown University, Providence, RI, USA, 2000. [Google Scholar]
- Silverman, H.F.; Yu, Y.; Sachar, J.M.; Patterson, W.R. Performance of real-time source-location estimators for a large-aperture microphone array. IEEE Trans. Speech Audio Process. 2005, 13, 593–606. [Google Scholar] [CrossRef]
- Paulraj, A.; Kailath, T. Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Tampa, FL, USA, 26–29 April 1985; Volume 10, pp. 640–643. [Google Scholar]
- Wang, M.; Ma, X.; Yan, S.; Hao, C. An Autocalibration Algorithm for Uniform Circular Array With Unknown Mutual Coupling. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 12–15. [Google Scholar] [CrossRef]
- Krishnappa, G. Cross-spectral method of measuring acoustic intensity by correcting phase and gain mismatch errors by microphone calibration. J. Acoust. Soc. Am. 1981, 69, 307–310. [Google Scholar] [CrossRef]
- Friedlander, B.; Weiss, A. Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Proc. Int. Conf. Acoust. Speech Signal Process. 1988, 5, 2681–2684. [Google Scholar]
- Weiss, A.J.; Friedlander, B. Eigenstructure methods for direction finding with sensor gain and phase uncertainties. J. Circuits Syst. Signal Process. 1990, 9, 271–300. [Google Scholar] [CrossRef]
- Ng, B.P.; Lie, J.P.; Er, M.H.; Feng, A. A practical simple geometry and gain/phase calibration technique for antenna array processing. IEEE Trans. Signal Process. 2009, 57, 1963–1972. [Google Scholar]
- Viberg, M.; Swindlehurst, A.L. A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Trans. Signal Process. 1994, 42, 3495–3507. [Google Scholar] [CrossRef]
- Liu, A.; Liao, G.; Zeng, C.; Yang, Z.; Xu, Q. An eigenstructure method for estimating DOA and sensor gain-phase errors. IEEE Trans. Signal Process. 2011, 59, 5944–5956. [Google Scholar] [CrossRef]
- Jiang, J.; Duan, F.; Chen, J.; Chao, Z.; Chang, Z.; Hua, X. Two new estimation algorithms for sensor gain and phase errors based on different data models. IEEE Sens. J. 2013, 13, 1921–1930. [Google Scholar] [CrossRef]
- Liao, B.; Chan, S. Direction-of-arrival estimation in subarrays-based linear sparse arrays with gain/phase uncertainties. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2268–2280. [Google Scholar] [CrossRef]
- Cao, S.; Ye, Z.; Xu, D.; Xu, X. A Hadamard product based method for DOA estimation and gain-phase error calibration. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1224–1233. [Google Scholar] [CrossRef]
- Liao, B.; Chan, S. Direction finding in partly calibrated uniform linear arrays with unknown gains and phases. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 217–227. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D.; Zeng, X.; Wang, W.; Zhang, J.; Chen, H. Joint azimuth-elevation/(-range) estimation of mixed near-field and far-field sources using two-stage separated steering vector-based algorithm. Prog. Electromagn. Res. 2011, 113, 17–46. [Google Scholar] [CrossRef]
- Zaman, F.; Qureshi, I.M.; Naveed, A.; Khan, Z.U. Joint estimation of amplitude, direction of arrival and range of near field sources using memetic computing. Prog. Electromagn. Res. 2012, 31, 199–213. [Google Scholar] [CrossRef]
- Huang, Y.; Barkat, M. Near-field multiple source localization by passive sensor array. IEEE Trans. Antennas Propag. 1991, 39, 968–975. [Google Scholar] [CrossRef]
- Challa, R.N.; Shamsunder, S. High-order subspace-based algorithms for passive localization of near-field sources. In Proceedings of the 1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 30 October–1 November 1995; Volume 2, pp. 777–781. [Google Scholar]
- Yuen, N.; Friedlander, B. Performance analysis of higher order ESPRIT for localization of near-field sources. IEEE Trans. Signal Process. 1998, 46, 709–719. [Google Scholar] [CrossRef]
- Wu, Y.; So, H.; Hou, C.; Li, J. Passive localization of near-field sources with a polarization sensitive array. IEEE Trans. Antennas Propag. 2007, 55, 2402–2408. [Google Scholar] [CrossRef]
- Jiang, J.; Duan, F.; Chen, J.; Li, Y.; Hua, X. Mixed near-field and far-field sources localization using the uniform linear sensor array. IEEE Sens. J. 2013, 13, 3136–3143. [Google Scholar] [CrossRef]
- Xie, D.; Huang, J.; Ge, H. Localization of near-field sources with partly calibrated subarray-based array. In Proceedings of the 2010 the 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; pp. 1758–1761. [Google Scholar]
- Yuan, L.; Jiang, R.; Chen, Y. Gain and phase autocalibration of large uniform rectangular arrays for underwater 3-D sonar imaging systems. IEEE J. Ocean. Eng. 2014, 39, 458–471. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of Signals by Information Theoretic Criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef]
- Bauschert, T.; Busing, C.; D’Andreagiovanni, F.; Koster, A.C.A.; Kutschka, M.; Steglich, U. Network planning under demand uncertainty with robust optimization. IEEE Commun. Mag. 2014, 52, 178–185. [Google Scholar] [CrossRef]
- D’Andreagiovanni, F.; Nardin, A. Towards the fast and robust optimal design of Wireless Body Area Networks. Appl. Soft Comput. 2015, 37, 971–982. [Google Scholar] [CrossRef]
- Shapiro, A.; Dentcheva, D.; Ruszczyński, A. Ruszczynski: Lectures on Stochastic Programming: Modeling and Theory; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009. [Google Scholar]
Sensor | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gain error | 1.000 | 0.892 | 1.129 | 1.012 | 1.151 | 1.171 | 1.175 | 0.982 | 1.155 | 0.908 | 1.141 | 1.145 | |
1.000 | 0.878 | 1.115 | 0.999 | 1.134 | 1.155 | 1.161 | 0.966 | 1.136 | 0.894 | 1.122 | 1.128 | ||
Gain error | 0 | −4.067 | −12.385 | 1.270 | 8.214 | 17.042 | −1.542 | 11.344 | 14.826 | −4.152 | 4.769 | −4.553 | |
0 | −4.093 | −12.249 | 1.453 | 8.285 | 17.232 | −1.312 | 11.868 | 15.387 | −3.443 | 5.580 | −3.674 |
Target | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Range (m) | 1651 | 1451 | 1251 | 1841 |
Azimuth (deg) | 20.1 | 15.5 | −35 | −5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yu, X.; Cui, G. A Sequential Optimization Calibration Algorithm for Near-Field Source Localization. Sensors 2017, 17, 1405. https://doi.org/10.3390/s17061405
Li J, Yu X, Cui G. A Sequential Optimization Calibration Algorithm for Near-Field Source Localization. Sensors. 2017; 17(6):1405. https://doi.org/10.3390/s17061405
Chicago/Turabian StyleLi, Jingjing, Xianxiang Yu, and Guolong Cui. 2017. "A Sequential Optimization Calibration Algorithm for Near-Field Source Localization" Sensors 17, no. 6: 1405. https://doi.org/10.3390/s17061405
APA StyleLi, J., Yu, X., & Cui, G. (2017). A Sequential Optimization Calibration Algorithm for Near-Field Source Localization. Sensors, 17(6), 1405. https://doi.org/10.3390/s17061405