Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar
<p>Configuration of monostatic multiple-input multiple-output radar.</p> "> Figure 2
<p>Spatial spectrum of the proposed method for white noise and colored noise.</p> "> Figure 3
<p>RMSE (root mean square error) versus different values of the parameters <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> and <span class="html-italic">Q</span>.</p> "> Figure 4
<p>RMSE versus SNR (signal-to-noise ratio) for different sparse DOA (direction-of-arrival) estimation algorithms.</p> "> Figure 5
<p>RMSE versus snapshots with SNR = 0 dB.</p> "> Figure 6
<p>RMSE versus angle separation with SNR = 0 dB.</p> "> Figure 7
<p>RMSE versus target resolution probability.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. The Proposed Algorithm
3.1. High-Order Cumulants Based Data Matrix Construction
3.2. Designs of Joint Smoothed Function and Joint Smoothed -Norm Framework for MMV Case
3.3. Design of the MMV-Based Signal Reconstruction in the Joint Smoothed -Norm Algorithm
- Step 1:
- Compute the fourth-order cumulants based matrix from Equations (11), (16) and (19).
- Step 2:
- Design the joint smoothed function tailored for the MMV case as Equation (23).
- Step 3:
- Construct the joint smoothed -norm sparse representation framework in Equation (26).
- Step 4:
- Execute the fast MMV-based sparse signal reconstruction with Equations (27)–(37).
- Step 5:
- Attain the DOA estimation based on Equation (38).
4. Related Remarks
5. Simulation Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
MIMO | Multiple-Input Multiple-Output |
DOA | Direction-of-Arrival |
FOC | Fourth-Order Cumulants |
MMV | Multiple Measurement Vector |
SMV | Single Measurement Vector |
SVD | Singular Value Decomposition |
ACV | Array Covariance Vectors |
SR | Sparse Representation |
RV | Real-Valued |
References
- Li, J.; Stoica, P. MIMO radar with colocated antennas. IEEE Signal Process. Mag. 2007, 24, 106–114. [Google Scholar] [CrossRef]
- Zhou, W.D.; Liu, J.; Zhu, P.; Gong, W.; Hou, J. Noncircular sources-based sparse representation algorithm for direction of arrival estimation in MIMO radar with mutual coupling. Algorithms 2016, 9, 61. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, X.F.; Feng, G.P.; Wang, Z.Q.; Xu, D.Z. On the MUSIC-derived aprroaches of angle estimation for bistatic MIMO radar. In Proceedings of the 2009 International Conference on Wireless Networks and Information Systems, Shanghai, China, 28–29 December 2009. [Google Scholar]
- Chen, D.; Chen, B.; Qin, G. Angle estimation using ESPRIT in MIMO radar. Electron. Lett. 2008, 44, 770–771. [Google Scholar]
- Nie, W.K.; Feng, D.Z.; Xie, H.; Li, J.; Xu, P.F. Improved MUSIC algorithm for high resolution angle estimation. Signal Process. 2016, 122, 87–92. [Google Scholar] [CrossRef]
- Qian, C.; Huang, L.; So, H.C. Computationally efficient ESPRIT algorithm for direction-of-arrival estimation based on Nyström method. Signal Process. 2014, 94, 74–80. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef]
- Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 1997, 45, 600–616. [Google Scholar] [CrossRef]
- Wipf, D.P.; Rao, B.D. Sparse Bayesian learning for basis selection. IEEE Trans. Signal Process. 2004, 52, 2153–2164. [Google Scholar] [CrossRef]
- Liu, Z.M.; Huang, Z.T.; Zhou, Y.Y. Array signal processing via sparsity-inducing representation of the array covariance matrix. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1710–1724. [Google Scholar] [CrossRef]
- Cotter, S.F.; Rao, B.D.; Engan, k.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53, 2477–2488. [Google Scholar] [CrossRef]
- Li, S.; Jiang, X.X.; He, W.; Wang, Y.G. Direction of arrival estimation via sparse representation of fourth order statistics. In Proceedings of the 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC), KunMing, China, 5–8 August 2013. [Google Scholar]
- Yin, J.; Chen, T. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Trans. Signal Process. 2011, 59, 4489–4493. [Google Scholar] [CrossRef]
- Wang, X.P.; Wang, W.; Li, X.; Liu, J. Real-valued covariance vector sparsity-inducing DOA estimation for monostatic MIMO radar. Sensors 2015, 15, 28271–28286. [Google Scholar] [CrossRef] [PubMed]
- Cands, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Dai, J.; Xu, X.; Zhao, D. Direction-of-arrival estimation via real-valued sparse representation. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 376–379. [Google Scholar] [CrossRef]
- Wang, X.P.; Wang, W.; Liu, J.; Li, X.; Wang, J.X. A sparse representation scheme for angle estimation in monostatic MIMO radar. Signal Process. 2014, 104, 258–263. [Google Scholar] [CrossRef]
- Mohimani, G.H.; Babaie-Zadeh, M.; Jutten, C. Complex-valued sparse representation based on smoothed l0 norm. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008. [Google Scholar]
- Mohimani, G.H.; Babaie-Zadeh, M.; Jutten, C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm. IEEE Trans. Signal Process. 2009, 57, 289–301. [Google Scholar] [CrossRef]
- Bu, H.X.; Tao, R.; Bai, X.; Zhao, J. Regularized smoothed l0 norm algorithm and its application to CS-based radar imaging. Signal Process. 2016, 122, 115–122. [Google Scholar] [CrossRef]
- Juwono, F.H.; Guo, Q.H.; Huang, D.F.; Wong, K.P.; Xu, L. Impulsive noise detection in PLC with smoothed l0-norm. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015. [Google Scholar]
- Liu, J.; Zhou, W.D.; Juwono, F.H.; Huang, D.F. Reweighted smoothed l0-norm based DOA estimation for MIMO radar. Signal Process. 2017, 137, 44–51. [Google Scholar] [CrossRef]
- Lie, S.; Leyman, A.R.; Chew, Y.H. Fourth-order and weighted mixed order direction-of-arrival estimators. IEEE Signal Process. Lett. 2006, 13, 691–694. [Google Scholar] [CrossRef]
- Liu, C.; Ye, Z.F.; Zhang, Y.F. DOA estimation based on fourth-order cumulants with unknown mutual coupling. Signal Process. 2009, 89, 1839–1843. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, W.D.; Wang, X.P. Fourth-order cumulants-based sparse representation approach for DOA estimation in MIMO radar with unknown mutual coupling. Signal Process. 2016, 128, 123–130. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.P.; Zhou, W.D. Covariance vector sparsity-aware DOA estimation for monostatic MIMO radar with unknown mutual coupling. Signal Process. 2016, 119, 21–27. [Google Scholar] [CrossRef]
- Bencheikh, M.L.; Wang, Y. Non circular ESPRIT-RootMUSIC joint DOA-DOD estimation in bistatic MIMO radar. In Proceedings of the 7th International Workshop on Systems, Signal Processing and their Applications (WOSSPA), Tipaza, Algeria, 9–11 May 2011. [Google Scholar]
- Wang, X.P.; Wang, W.; Li, X.; Liu, Q.; Liu, J. Sparsity-aware DOA estimation scheme for noncircular source in MIMO radar. Sensors 2016, 16, 539. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, J.; Liao, G. Multitarget identification and localization using bistatic MIMO radar systems. EURASIP J. Adv. Signal Process. 2008. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, L.T.; Diao, M. LPI radar waveform recognition based on time-frequency distribution. Sensors 2016, 16, 1682. [Google Scholar] [CrossRef] [PubMed]
- Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef]
0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|
Average Computation Time (s) | 0.0401 | 0.0498 | 0.0752 | 0.1137 | 0.2511 |
Q | 3 | 11 | 19 | 27 | 35 |
---|---|---|---|---|---|
Average Computation Time (s) | 0.0399 | 0.1382 | 0.2576 | 0.3696 | 0.4738 |
(M,N,P) | Average Computation Time (s) | ||||
---|---|---|---|---|---|
Proposed Method | -SVD | RV -SVD | RV -SRACV | RSL0 | |
(4,4,2) | 0.0269 | 2.1067 | 1.5499 | 1.3213 | 0.0135 |
(4,4,3) | 0.0323 | 2.5139 | 2.0591 | 1.3368 | 0.0139 |
(5,5,2) | 0.0273 | 2.4984 | 2.1071 | 2.1277 | 0.0252 |
(5,5,3) | 0.0373 | 3.1170 | 2.7076 | 2.3842 | 0.0254 |
(6,6,2) | 0.0328 | 2.6323 | 2.2911 | 3.2908 | 0.0438 |
(6,6,3) | 0.0395 | 3.5439 | 3.1187 | 4.7397 | 0.0441 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhou, W.; Juwono, F.H. Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar. Sensors 2017, 17, 1068. https://doi.org/10.3390/s17051068
Liu J, Zhou W, Juwono FH. Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar. Sensors. 2017; 17(5):1068. https://doi.org/10.3390/s17051068
Chicago/Turabian StyleLiu, Jing, Weidong Zhou, and Filbert H. Juwono. 2017. "Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar" Sensors 17, no. 5: 1068. https://doi.org/10.3390/s17051068
APA StyleLiu, J., Zhou, W., & Juwono, F. H. (2017). Joint Smoothed l0-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar. Sensors, 17(5), 1068. https://doi.org/10.3390/s17051068