Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution
<p>Scheme of PAMONO-sensor experimental setup used for detection of biological nano-vesicles.</p> "> Figure 2
<p>Schemes of the sensor surface functionalization approaches utilized in PAMONO-sensor. Cystein-conjugated protein A/G—antibody (without any conjugated tag) (<b>a</b>) and biotin-thiol—streptavidin—biotinylated antibody (<b>b</b>) self assembling monolayers can be formed on the gold sensor surface to capture the vesicles of interest.</p> "> Figure 3
<p>Typical processed image of a microvesicle binding onto the functionalized sensor surface is represented by a bright spot on a grey background (<b>a</b>). Bright pixels grouped in one spot stand for one binding event. Time-course changes of the light intensity in such a group of pixels are described by a vertical jump of intensity, in a moment of particle binding, at a new oscillation level and stabilization there (<b>b</b>). In parallel, we also measured the samples containing microvesicles derived from SH-SY5Y cells using LM10 device. The results of one of such measurements are presented on panel (<b>c</b>). The uniqueness of a significant particle size peak and similarity of the measured particle size with previously published results indicate that samples measured by our PAMONO-sensor consist predominantly of individual microvesicles. (<b>a</b>) sensor image data; (<b>b</b>) intensity step over time; and (<b>c</b>) LM10 measurement.</p> "> Figure 4
<p>Comparison of samples containing microvesicles derived from non-transfected SH-SY5Y cells and cells transfected and expressing either TrkA or TrkB. Samples were measured using the PAMONO-sensor (<b>a</b>) and LM10 device (<b>b</b>). Microvesicle concentrations were detected by the LM10 device and demonstrated the following tendency—normalized microvesicle counts were increasing from non-transfected cells (SY5Y cont.) to cells expressing TrkB (SY5Y TrkB) and were the highest by cells expressing TrkA (SY5Y TrkA). These LM10 measurements were performed at least in triplicates and served as reference measurements. The same trend was received for counting rate measurements performed with the same samples using the PAMONO-sensor. Four measurements were performed using two non-crossing sensor regions in combination with two non-crossing time intervals. Error bars represent SEMs. These results demonstrate that the PAMONO-sensor allows for comparison of relative concentrations of microvesicles using only information about signal counting rates. (<b>a</b>) PAMONO-sensor; and (<b>b</b>) LM10 device.</p> "> Figure 5
<p>Changes of virus-like particle (VLP) counting rates after repeated use of the same gold sensor were investigated. Sensor surface is functionalized with cysteine-conjugated protein A/G and further covered with anti-ovalbumin antibody. After the first coverage with antibody and a measurement of VLP counting rate, an elution of antibody layer is performed. Then, after recovery with Phosphate-buffered saline (PBS) buffer, the second time coverage with anti-ovalbumin antibody and again a measurement of VLP counting rate are carried out. This cycle is repeated the third time. Three independent experiments were performed. The efficiency of antibody binding to the sensor surface is monitored and data are presented on the graph (<b>a</b>). The typical monitored antibody binding curves are displayed (for one experiment from three performed). Counting rates of HIV-VLPs are presented on the graph (<b>b</b>). Statistical analysis was performed using Student’s <span class="html-italic">t</span>-test. Significance was set at <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo><</mo> <mn>0</mn> <mo>.</mo> <mn>05</mn> </mrow> </semantics> </math> and marked with symbol “*” (significant difference between the first application of VLP and the second). (<b>a</b>) antibody binding efficiency; and (<b>b</b>) HIV-VLP counting rates.</p> "> Figure 6
<p>Experiment results for four different suspensions analysed by the PAMONO-sensor. The order of results for suspensions is the following (from left to right): solo 100 nm particles, solo 200 nm, solo 300 nm, the mixture of 100 nm and 200 nm and 300 nm particles. The top row shows reference distributions obtained with the LM10 device while the bottom row shows PAMONO-sensor results.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Plasmon Resonance (SPR) Experimental Setup
2.2. Chemical and Biological Materials: Preparation of Human Immunodeficiency Virus (HIV) Virus-Like Particles (VLPs) and Microvesicles (MVs) from SH SY5Y Neuroblastoma Cells
2.3. PAMONO Measurements of MVs Derived from SH-SY5Y Cells and Human Immunodeficiency Virus (HIV)-VLPs Produced by HEK293T Cells
2.4. PAMONO Measurements of Particle Size Distribution in the Mixtures of Particles
2.5. The Demonstration of Suitability of Convolutional Neural Networks for Real-Time Estimation of Nano-Particle Size Distributions
3. Results and Discussion
3.1. PAMONO-Sensor Enables Detection of Microvesicles (MVs) Derived from SH SY5Y Cells
3.2. PAMONO-Sensor Measurements Permit to Compare Relative Microvesicle Concentrations in Samples
3.3. Estimation the Specificity of Vesicle Detection by the PAMONO-Sensor
3.4. Evaluation of the Changes in the Counting Rate of HIV-VLPs after Repeated Use of the Same Gold Sensor
3.5. Monitoring of Particle Size Distribution Using the PAMONO-Sensor
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CNN | convolutional neural networks |
ELISA | enzyme-linked immunosorbent assay |
EV | extracellular vesicle |
FBS | fetal bovine serum |
FACS | fluorescence-activated cell sorting |
HIV | human immunodeficiency virus |
MV | microvesicle |
NTA | nano-particle tracking analysis |
OVA | ovalbumin |
PAMONO | plasmon-assisted microscopy of nano-objects |
PBS | phosphate-buffered saline |
SPR | surface plasmon resonance |
STR | short tandem repeats |
VLP | virus-like particle |
References
- Zybin, A.; Kuritsyn, Y.A.; Gurevich, E.L.; Temchura, V.V.; Überla, K.; Niemax, K. Real-time Detection of Single Immobilized Nanoparticles by Surface Plasmon Resonance Imaging. Plasmonics 2010, 5, 31–35. [Google Scholar] [CrossRef]
- Gurevich, E.L.; Temchura, V.V.; Überla, K.; Zybin, A. Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sens. Actuators B Chem. 2011, 160, 1210–1215. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [PubMed]
- Abdulhalim, I.; Zourob, M.; Lakhtakia, A. Surface Plasmon Resonance for Biosensing: A Mini-Review. Electromagnetics 2008, 28, 214–242. [Google Scholar] [CrossRef]
- Silvestry, D.; Sonato, A.; Ruffato, G.; Meneghello, A.; Antognoli, A.; Cretaio, E.; Dettin, M.; Zamuner, A.; Casarin, E.; Zacco, G.; et al. A peptide nucleic acid label-free biosensor for Mycobacterium tuberculosis DNA detection via azimuthally controlled grating-coupled SPR. Anal. Methods 2015, 7, 4173–4180. [Google Scholar] [CrossRef]
- Sonato, A.; Agostini, M.; Ruffato, G.; Gazzola, E.; Liuni, D.; Greco, G.; Travagliati, M.; Cecchini, M.; Romanato, F. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. Lab Chip 2016, 16, 1224–1233. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Shan, X.N.; Patel, U.; Huang, X.P.; Lu, J.; Li, J.H.; Tao, N.J. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2010, 107, 16028–16032. [Google Scholar] [CrossRef] [PubMed]
- Halpern, A.R.; Wood, J.B.; Wang, Y.; Corn, R.M. Single-Nanoparticle Near-Infrared Surface Plasmon Resonance Microscopy for Real-Time Measurements of DNA Hybridization Adsorption. ACS Nano 2014, 8, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Shpacovitch, V.; Temchura, V.; Matrosovich, M.; Hamacher, J.; Skolnik, J.; Libuschewski, P.; Siedhoff, D.; Weichert, F.; Marvedel, P.; Müller, H.; et al. Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal. Biochem. 2015, 486, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Im, H.; Shao, H.L.; Park, Y.I.; Peterson, V.M.; Castro, C.M.; Weissleder, R.; Lee, H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 2014, 32, U490–U495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, K.; Cui, J.; Liu, H.; Bu, X.L.; Ma, H.L.; Wang, W.Z.; Gong, H.; Lausted, C.; Hood, L.; et al. Label-Free Quantitative Detection of Tumor-Derived Exosomes through Surface Plasmon Resonance Imaging. Anal. Chem. 2014, 86, 8857–8864. [Google Scholar] [CrossRef] [PubMed]
- Yanez-Mo, M.; Siljander, P.R.; Andreu, Z.; Zavec, A.B.; Borras, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyorgy, B.; Szabo, T.G.; Pasztoi, M.; Pal, Z.; Misjak, P.; Aradi, B.; Laszlo, V.; Pallinger, E.; Pap, E.; Kittel, A.; et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol. Life Sci. 2011, 68, 2667–2688. [Google Scholar] [CrossRef] [PubMed]
- Erdbrugger, U.; Lannigan, J. Analytical challenges of extracellular vesicle detection: A comparison of different techniques. Cytometry A 2016, 89, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, E. Determination of Optical Constants of Metals by Excitation of Surface Plasmons. Z. Phys. 1971, 241, 313–324. [Google Scholar] [CrossRef]
- Zybin, A.; Shpacovitch, V.; Skolnik, J.; Hergenröder, R. Optimal conditions for SPR-imaging of nano-objects. Sens. Actuators B Chem. 2017, 239, 338–342. [Google Scholar] [CrossRef]
- Sidorenko, I.; Nizamov, S.; Hergenröder, R.; Zybin, A.; Kuzmichev, A.; Kiwull, B.; Niessner, R.; Mirsky, V.M. Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim. Acta 2016, 183, 101–109. [Google Scholar] [CrossRef]
- Siedhoff, D.; Libuschewski, P.; Weichert, F.; Zybin, A.; Marwedel, P.; Müller, H. Modellierung und Optimierung eines Biosensors zur Detektion viralen Strukturen. In Bildverarbeitung für die Medizin. Lecture Notes in Informatics; Springer: Berlin, Germany, 2014; pp. 108–113. (In Germany) [Google Scholar]
- Libuschewski, P.; Siedhoff, D.; Timm, C.; Gelenberg, A.; Weichert, F. Fuzzy-enhanced real-time capable detection of biological viruses using a portable biosensor. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies (Biosignals), Barcelona, Spain, 11–14 February 2013.
- Gardt, O.; Grewe, B.; Tippler, B.G.; Überla, K.; Temchura, V.V. HIV-derived lentiviral particles promote T-cell independent activation and differentiation of naive cognate conventional B2-cells in vitro. Vaccine 2013, 31, 5088–5098. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Graf, M.; Bieler, K.; Wolf, H.; Grunwald, T.; Foley, P.; Überla, K. Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: Implications for the safety of lentiviral vectors. Hum. Gene Ther. 2000, 11, 2403–2413. [Google Scholar] [CrossRef] [PubMed]
- Temchura, V.V.; Tenbusch, M.; Nchinda, G.; Nabi, G.; Tippler, B.; Zelenyuk, M.; Wildner, O.; Überla, K.; Kuate, S. Enhancement of immunostimulatory properties of exosomal vaccines by incorporation of fusion-competent G protein of vesicular stomatitis virus. Vaccine 2008, 26, 3662–3672. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.X.; Li, Y.; Kang, C.Y. Budding and secretion of HIV Gag-Env virus-like particles from recombinant human adenovirus infected cells. Virus Res. 2003, 92, 75–82. [Google Scholar] [CrossRef]
- Grgacic, E.V.L.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Schramm, A.; Schulte, J.H.; Klein-Hitpass, L.; Havers, W.; Sieverts, H.; Berwanger, B.; Christiansen, H.; Warnat, P.; Brors, B.; Eils, J.; et al. Prediction of clinical outcome and biological characterization of neuroblastoma by expression profiling. Oncogene 2005, 24, 7902–7912. [Google Scholar] [CrossRef] [PubMed]
- Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning Hierarchical Features for Scene Labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, H.K.; Jung, Y.; Kim, J.K.; Jung, S.O.; Chung, B.H. Direct immobilization of protein G variants with various numbers of cysteine residues on a gold surface. Anal. Chem. 2007, 79, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Erviti, L.; Seow, Y.; Schapira, A.H.; Gardiner, C.; Sargent, I.L.; Wood, M.J.A.; Cooper, J.M. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 2011, 42, 360–367. [Google Scholar] [CrossRef] [PubMed]
Protein A/G | Biotin-Thiol | |
---|---|---|
Ratio: VLPs (virus-like particles) with OVA (ovalbumin) to VLPs without OVA (normalized counting rates were used) | 21 | |
Specificity (%) | 88–94 | 95 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shpacovitch, V.; Sidorenko, I.; Lenssen, J.E.; Temchura, V.; Weichert, F.; Müller, H.; Überla, K.; Zybin, A.; Schramm, A.; Hergenröder, R. Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution. Sensors 2017, 17, 244. https://doi.org/10.3390/s17020244
Shpacovitch V, Sidorenko I, Lenssen JE, Temchura V, Weichert F, Müller H, Überla K, Zybin A, Schramm A, Hergenröder R. Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution. Sensors. 2017; 17(2):244. https://doi.org/10.3390/s17020244
Chicago/Turabian StyleShpacovitch, Victoria, Irina Sidorenko, Jan Eric Lenssen, Vladimir Temchura, Frank Weichert, Heinrich Müller, Klaus Überla, Alexander Zybin, Alexander Schramm, and Roland Hergenröder. 2017. "Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution" Sensors 17, no. 2: 244. https://doi.org/10.3390/s17020244
APA StyleShpacovitch, V., Sidorenko, I., Lenssen, J. E., Temchura, V., Weichert, F., Müller, H., Überla, K., Zybin, A., Schramm, A., & Hergenröder, R. (2017). Application of the PAMONO-Sensor for Quantification of Microvesicles and Determination of Nano-Particle Size Distribution. Sensors, 17(2), 244. https://doi.org/10.3390/s17020244