CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review
<p>Components of a general integrated electrochemical biosensor.</p> "> Figure 2
<p>The functional structure of an ion-sensitive field effect transistors (ISFET) biosensor. RE, reference electrode. S is the MOSFET source, D is the drain, and A represents a current meter.</p> "> Figure 3
<p>The equivalent circuit model of (<b>a</b>) a two-electrode system and (<b>b</b>) a three-electrode system. Z<sub>CE</sub> is impedance between RE and the counter electrode (CE). WE, working electrode.</p> "> Figure 4
<p>The structure of the instrumentation for electrochemical biosensors.</p> "> Figure 5
<p>Three-electrode potentiostats with the (<b>a</b>) grounded-WE structure and (<b>b</b>) grounded-CE structure.</p> "> Figure 6
<p>Fully-differential potentiostat (adapted from [<a href="#B46-sensors-17-00074" class="html-bibr">46</a>]). OP1–3 are operational amplifiers.</p> "> Figure 7
<p>Resistive feedback current readout circuit.</p> "> Figure 8
<p>Capacitive feedback current readout circuit.</p> "> Figure 9
<p>The structure of CDS circuit (adapted from [<a href="#B47-sensors-17-00074" class="html-bibr">47</a>]).</p> "> Figure 10
<p>The structure of the pseudo-differential amperometry readout circuit (adapted from [<a href="#B41-sensors-17-00074" class="html-bibr">41</a>]).</p> "> Figure 11
<p>The structure of the current mirror amperometric readout circuit with the potentiostat (adapted from [<a href="#B47-sensors-17-00074" class="html-bibr">47</a>]).</p> "> Figure 12
<p>The structure of a first-order incremental current mode Σ∆ ADC circuit for amperometric sensing.</p> "> Figure 13
<p>(<b>a</b>) Impedimetric sensor circuitry model where C<sub>dl</sub> represents double-layer capacitance, R<sub>s</sub> denotes solution resistance and Z<sub>f</sub> represents Faradic components. (<b>b</b>) Frequency response analyzer (FRA) method for extracting transducer impedance/admittance. Both phasor domain and time domain signal expressions are given. ω is the stimulus signal frequency. |Y|∠θ is the phasor form of the transducer admittance. Asin(ω<span class="html-italic">t</span>) is the stimulus voltage for the electrochemical transducer. A'sin(ωt + θ) is the output current of the transducer. sin(ωt) and cos(ωt) are the reference signals to extract the real part of imaginary part of the signal. LPF is the low pass filter. REAL and IMG are two orthogonal outputs, representing real and imaginary components of impedance/admittance.</p> "> Figure 14
<p>The structure of the lock-in Σ∆ impedance extraction circuit. The circuit extracts the imaginary portion of admittance when S = 1 and the real portion when S = 0 (adapted from [<a href="#B16-sensors-17-00074" class="html-bibr">16</a>]).</p> "> Figure 15
<p>Dual-slope multiplying ADC architecture (adapted from [<a href="#B94-sensors-17-00074" class="html-bibr">94</a>]).</p> "> Figure 16
<p>Components in integrating a CMOS biosensor microsystem.</p> "> Figure 17
<p>A 2 × 2 thin film planar gold microelectrode array fabricated on a CMOS chip, which includes WE, CE and RE.</p> "> Figure 18
<p>Concept of lab-on-CMOS integration of CMOS biosensors and multichannel microfluidics using a carrier device and planar electrical interconnections.</p> ">
Abstract
:1. Introduction
2. Electrochemical Biosensor Techniques
2.1. Potentiometric Biosensor
2.2. Amperometric Biosensor
2.3. Impedimetric Biosensor
2.4. Ion-Sensitive Field Effect Transistor Biosensor
2.5. Electrode Transducer
3. CMOS Instrumentation for Amperometric and Impedimetric Biosensors
3.1. Potentiostat
3.2. DC Current Readout Circuitry
3.2.1. Resistive Feedback Current Readout Circuits
3.2.2. Capacitive Feedback Current Readout Circuits
3.2.3. Current Conveyor Current Readout Circuits
3.2.4. Digitization Circuits for DC Current Readouts
3.3. AC Current Readout Circuitry
3.3.1. Impedance Extraction Algorithms
3.3.2. Impedance Extraction Algorithm Implementation
4. CMOS Biosensor Microsystem Integration
4.1. On-Chip Electrodes
4.2. Chip-Scale Packaging
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Global Industry Analysis Inc. The Global Biosensors Market; Global Industry Analysis Inc.: San Jose, CA, USA, 2014. [Google Scholar]
- Mohanty, S.P.; Kougianos, E. Biosensors: A tutorial review. IEEE Potentials 2006, 25, 35–40. [Google Scholar] [CrossRef]
- Jang, B.; Hassibi, A. Biosensor systems in standard CMOS processes: Fact or fiction? IEEE Trans. Ind. Electr. 2009, 56, 979–985. [Google Scholar] [CrossRef]
- Cai, W.; Peck, J.R.; van der Weide, D.W.; Hamers, R.J. Direct electrical detection of hybridization at DNA-modified silicon surfaces. Biosens. Bioelectron. 2004, 19, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Gua, T.; Hasebeb, Y. Novel amperometric assay for drug–DNA interaction based on an inhibitory effect on an electrocatalytic activity of DNA–Cu(II) complex. Biosens. Bioelectron. 2012, 33, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Chiti, G.; Marrazza, G.; Mascini, M. Electrochemical DNA biosensor for environmental monitoring. Anal. Chim. Acta 2001, 427, 155–164. [Google Scholar] [CrossRef]
- Ponzio, F.; Jonsson, G. A rapid and simple method for the determination of picogram levels of serotonin in brain tissue using liquid chromatography with electrochemical detection. J. Neurochem. 2006, 32, 129–132. [Google Scholar] [CrossRef]
- Peters, J.L.; Miner, L.H.; Michael, A.C.; Sesack, S.R. Ultrastructure of carbon fiber microelectrode implantation sites after acute voltammetric measurements in the striatum of anesthetized rats. J. Neurosci. Methods 2004, 137, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Setterington, E.H.; Alocilja, E.C. Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7. Biosens. Bioelectron. 2001, 26, 2208–2212. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, R.; Fournier-Wirth, C.; Coste, J.; Chebib, H.; Saïkali, Y.; Vittori, O.; Errachid, A.; Cloarec, J.P.; Martelet, C.; Jaffrezic-Renault, N. Label-Free Detection of Bacteria by Electrochemical Impedance Spectroscopy: Comparison to Surface Plasmon Resonance. Anal. Chem. 2007, 79, 4879–4886. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.; Yang, L.; Li, Y. Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy. Anal. Chem. 2002, 74, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
- Kotanen, C.N.; Moussy, F.G.; Carrara, S.; Guiseppi-Elie, A. Implantable enzyme amperometric biosensors. Biosens. Bioelectron. 2012, 35, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Hrapovic, S.; Luong, J.H.T. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: Preparation and characterization. Anal. Chem. 2003, 75, 3308–3315. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Hou, S.; Yin, F.; Zhao, Z.; Wang, Y.; Wang, X.; Chen, Q. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens. Bioelectron. 2007, 22, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Qureshi, W.A.; Mason, A.J. CMOS amperometric instrumentation and packaging for biosensor array applications. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jadhav, S.R.; Worden, R.M.; Mason, A.J. Compact low-power impedance-to-digital converter for sensor array microsystems. IEEE J. Solid-State Circuits 2009, 44, 2844–2855. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilsond, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Korotcenkov, G. Chemical Sensors, Vol 1: General Approaches (Sensor Technology); Momentum Press: New York, NY, USA, 2010. [Google Scholar]
- Komori, H.; Niitsu, K.; Tanaka, J.; Ishige, Y.; Kamahori, M.; Nakazato, K. An extended-gate CMOS sensor array with enzyme-immobilized microbeads for redox-potential glucose detection. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS), Lausanne, Switzerland, 22–24 October 2014; pp. 464–467.
- Stefan, R.I.; van Staden, J.F.; Aboul-Enein, H.Y. Immunosensors in clinical analysis. Fresenius J. Anal. Chem. 2000, 366, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring: A Review. J. Pharm. Biomed. Anal. 1999, 19, 47–53. [Google Scholar] [CrossRef]
- Palchettia, I.; Cagnini, A.; Del Carlo, M.; Coppi, C.; Mascini, M.; Turner, A.P.F. Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Anal. Chim. Acta 1997, 337, 315–321. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Stelzle, M.; Weissmuller, G.; Sackmann, E. On the application of supported bilayers as receptive layers for biosensors with electrical detection. J. Phys. Chem. 1993, 97, 2974–2981. [Google Scholar] [CrossRef]
- Yin, F. A novel capacitive sensor based on human serum albumin-chelant complex as heavy metal ions chelating proteins. Anal. Lett. 2004, 37, 1269–1284. [Google Scholar] [CrossRef]
- Bontidean, I.; Berggren, C.; Johansson, G.; Csoregi, E.; Mattiasson, B.; Lloyd, J.A.; Jakeman, K.J.; Brown, N.L. Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal. Chem. 1998, 70, 4162–4169. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.J.; Li, Y.B.; Griffis, C.L.; Johnson, M.G. Interdigitated microelectrode (IME) impedance sensor for the detection of viable salmonella typhimurium. Biosens. Bioelectron. 2004, 19, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.N.; Retterer, S.; Zieziulewicz, T.J.; Isaacson, M.; Szarowski, D.; Mousseau, D.E.; Lawrence, D.A.; Turner, J.N. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis. Biosens. Bioelectron. 2005, 21, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-S.; Kim, S.K.; Kim, M. Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors 2009, 9, 7111–7131. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-R.; Sawada, K.; Takao, H.; Ishida, M. An enhanced glucose biosensor using charge transfer techniques. Biosens. Bioelectron. 2008, 24, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Kharitonov, A.B.; Wasserman, J.; Katz, E.; Willner, I. The Use of Impedance Spectroscopy for the Characterization of Protein-Modified ISFET Devices: Application of the Method for the Analysis of Biorecognition Processes. J. Phys. Chem. B 2001, 105, 4205–4213. [Google Scholar] [CrossRef]
- Purushothaman, S.; Toumazou, C.; Ou, C. Protons and single nucleotide polymorphism detection: A simple use for the ion sensitive field effect transistor. Sens. Actuators B Chem. 2006, 114, 964–968. [Google Scholar] [CrossRef]
- Kalofonou, M.; Georgiou, P.; Ou, C.P.; Toumazou, C. An ISFET based translinear sensor for DNA methylation detection. Sens. Actuators B Chem. 2012, 161, 156–162. [Google Scholar] [CrossRef]
- Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, L.; Han, Y.; Zhou, S.; Guan, X. Nanopore Stochastic Detection: Diversity, Sensitivity, and Beyond. Acc. Chem. Res. 2013, 46, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Ravezzi, L.; Conci, P. ISFET sensor coupled with CMOS read-out circuit microsystem. Electron. Lett. 1998, 34, 2234–2235. [Google Scholar] [CrossRef]
- Lee, I.; Lee, S.-W.; Lee, K.-Y.; Park, C.; Kim, D.; Lee, J.-S.; Yi, H.; Kim, B. A Reconfigurable and Portable Highly Sensitive Biosensor Platform for ISFET and Enzyme-Based Sensors. IEEE Sens. J. 2016, 16, 4443–4451. [Google Scholar] [CrossRef]
- Janata, J. Historical review. Twenty years of ion-selective field-effect transistors. Analyst 1994, 119, 2275–2278. [Google Scholar] [CrossRef]
- Zhu, X.; Ahn, C. On-chip Electrochemical Analysis System Using Nanoelectrodes and Bioelectronic CMOS Chip. IEEE J. Sens. 2006, 6, 1280–1286. [Google Scholar] [CrossRef]
- Huang, Y.; Mason, A.J. A redox-enzyme-based electrochemical biosensor with a CMOS integrated bipotentiostat. In Proceedings of the Biomedical Circuits and Systems Conference, BioCAS 2009, Beijing, China, 26–28 November 2009; pp. 29–32.
- Das, A.; Bhadri, P.; Beyette, F.R.; Jang, A.; Bishop, P.; Timmons, W. A potentiometric sensor system with integrated circuitry for in situ environmental monitoring. In Proceedings of the 2006 Sixth IEEE Conference on Nanotechnology, Cincinnati, OH, USA, 17–20 July 2006; pp. 917–920.
- Sun, A.; Venkatesh, A.; Hall, D.A. A Multi-Technique Reconfigurable Electrochemical Biosensor: Enabling Personal Health Monitoring in Mobile Devices. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 945–954. [Google Scholar] [CrossRef]
- Thewes, R.; Hofmann, F.; Frey, A.; Holzapfl, B.; Schienle, M.; Paulus, C.; Schindler, P.; Eckstein, G.; Kassel, C.; Stanzel, M.; et al. Sensor arrays for fully electronic DNA detection on CMOS. In Proceedings of the 2002 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 7 February 2002.
- Turner, R.F.B.; Harrison, D.J.; Baltes, H.P. A CMOS Potentiostat for Amperometric Chemical Sensors. IEEE J. Solid-State Circuits 1987, 22, 473–478. [Google Scholar] [CrossRef]
- Martin, S.M.; Gebara, F.H.; Strong, T.D.; Brown, R.B. A fully differential potentiostat. IEEE Sens. J. 2009, 9, 135–142. [Google Scholar] [CrossRef]
- Ahmadi, M.M.; Jullien, G.A. Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2009, 56, 1339–1348. [Google Scholar] [CrossRef]
- Martin, S.M.; Gebara, F.H.; Larivee, B.J.; Brown, R.B. A CMOS-Integrated Microinstrument for Trace Detection of Heavy Metals. IEEE J. Solid-State Circuits 2005, 40, 2777–2786. [Google Scholar] [CrossRef]
- Lauwers, E.; Suls, J.; Gumbrecht, W.; Maes, D.; Gielen, G.; Sansen, W. A CMOS Multiparameter Biochemical Microsensor with Temperature Control and Signal Interfacing. IEEE J. Solid-State Circuit 2001, 36, 2030–2038. [Google Scholar] [CrossRef]
- Levine, P.M.; Gong, P.; Levicky, R.; Shepard, K.L. Active CMOS sensor array for electrochemical biomolecular detection. IEEE J. Solid-State Circuits 2008, 43, 1859–1871. [Google Scholar] [CrossRef]
- Martin, S.M.; Gebara, F.H.; Strong, T.D.; Brown, R.B. A Low-Voltage, Chemical Sensor Interface for Systems-On-Chip: The Fully-Differential Potentiostat. In Proceedings of the 2004 International Symposium on Circuits and Systems, Vancouver, BC, Canada, 23–26 May 2004; Volume 4, pp. 892–895.
- Carminati, M.; Ferrari, G.; Guagliardo, F.; Farina, M.; Sampietro, M. Low-Noise Single-Chip Potentiostat for Nano-Bio-Electrochemistry over a 1MHz Bandwidth. In Proceedings of the 16th IEEE International Conference on Electronics, Circuits, and Systems, Hammamet, Tunisia, 13–16 December 2009; pp. 952–955.
- Reay, R.J.; Kounaves, S.P.; Kovacs, G.T.A. An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 16–18 February 1994; pp. 162–163.
- Yang, C.; Huang, Y.; Hassler, B.L.; Worden, R.M.; Mason, A.J. Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Ayers, S.; Gillis, K.D.; Lindau, M.; Minch, B.A. Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.; Chakrabartty, S.; Pal, S.; Alocilja, E.C. A multichannel femtoampere-sensitivity potentiostat array for biosensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 2357–2363. [Google Scholar] [CrossRef]
- Narula, H.S.; Harris, J.G. A time-based VLSI potentiostat for ion current measurements. IEEE Sens. J. 2006, 6, 239–247. [Google Scholar] [CrossRef]
- Breten, M.; Lehmann, T.; Bruun, E. Integrating Data Converters for Picoampere Currents from Electrochemical Transducers. In Proceedings of the IEEE International Symposium on Circuits and Systems, Geneva, Switzerland, 28–31 May 2000.
- Damen, C.W.N.; Groot, E.R.; Heij, M.; Boss, D.S.; Schellens, J.H.M.; Rosing, H.; Beijnen, J.H.; Aarden, L.A. Development and validation of an enzyme-linked immunosorbent assay for the quantification of trastuzumab in human serum and plasma. Anal. Biochem. 2009, 391, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Weerakoon, P.; Culurciello, E.; Klemic, K.G.; Sigworth, F.J. An integrated patch-clamp potentiostat with electrode compensation. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Goldstein, B.; Tang, W.; Sigworth, F.J.; Culurciello, E. Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 52–62. [Google Scholar]
- Rosenstein, J.K.; Ramakrishnan, S.; Roseman, J.; Shepard, K.L. Single ion channel recordings with CMOS-anchored lipid membranes. Nano Lett. 2013, 13, 2682–2686. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, J.K.; Wanunu, M.; Merchant, C.A.; Drndic, M.; Shepard, K.L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 2012, 9, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Crescentini, M.; Bennati, M.; Carminati, M.; Tartagni, M. Noise limits of CMOS current interfaces for biosensors: A review. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Schienle, M.; Paulus, C.; Frey, A.; Hofmann, F.; Holzapfl, B.; Schindler-Bauer, P.; Thewes, R. A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. IEEE J. Solid-State Circuits 2004, 39, 2438–2445. [Google Scholar] [CrossRef]
- Genov, R.; Stanacevic, M.; Naware, M.; Cauwenberghs, G.; Thakor, N. 16-channel integrated potentiostat for distributed neurochemical sensing. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 2371–2376. [Google Scholar] [CrossRef]
- Stanacevic, M.; Murari, K.; Rege, A.; Cauwenberghs, G.; Thakor, N.V. VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.H.; Mazhab-Jafari, H.; Leng, L.; Guenther, A.; Genov, R. CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.M.; Genov, R. Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans. Circuits Syst. I 2013, 60, 1149–1157. [Google Scholar] [CrossRef]
- Sutula, S.; Cuxart, J.P.; Gonzalo-Ruiz, J.; Muñoz-Pascual, F.X.; Teres, L.; Serra-Graells, F. A 25-µW All-MOS Potentiostatic Delta-Sigma ADC for Smart Electrochemical Sensors. IEEE Trans. Circuits Syst. I 2014, 61, 671–679. [Google Scholar] [CrossRef]
- Li, H.; Boling, C.S.; Mason, A.J. CMOS amperometric ADC with high sensitivity, dynamic range and power efficiency for air quality monitoring. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ng, W.; Yuan, J.; Li, S.; Chan, M. A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Murari, K.; Thakor, N.; Stanacevic, M.; Cauwenberghs, G. Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 1–5 September 2004; Volume 6, pp. 4063–4066.
- Kakerow, R.G.; Kappert, H.; Spiegel, E.; Manoli, Y. Low power single chip CMOS potentiostat. In Proceedings of the International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, 25–29 June 1995; pp. 142–145.
- Bandyopadhyay, A.; Mulliken, G.; Cauwenberghs, G.; Thakor, N. VLSI potentiostat array for distributed electrochemical neural recording. In Proceedings of the IEEE International Symposium on Circuits and Systems, Scottsdale, AZ, USA, 26–29 May 2002; pp. 740–743.
- Ferrari, G.; Gozzini, F.; Molari, A.; Sampietro, M. Transimpedance Amplifier for High Sensitivity Current Measurements on Nanodevices. IEEE J. Solid-State Circuits 2009, 44, 1609–1616. [Google Scholar] [CrossRef]
- Parsnejad, S.; Li, H.; Mason, A.J. Compact CMOS amperometric readout for nanopore arrays in high throughput lab-on-CMOS. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2851–2854.
- Liu, X.; Li, H.; Yin, L.; Chen, W.; Suo, C.; Zhou, Z. Noise analysis and characterization of a full differential CMOS interface circuit for capacitive closed-loop micro-accelerometer. J. Harbin Inst. Technol. 2010, 17, 684–689. [Google Scholar]
- Lemkin, M.; Boser, B.E. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J. Solid-State Circuits 1999, 34, 456–468. [Google Scholar] [CrossRef]
- Liu, X.; Yin, L.; Li, H.; Zhou, Z. Full differential CMOS interface circuit for closed-loop capacitive micro-accelerometers. Opt. Precis. Eng. 2011, 19, 581–585. [Google Scholar]
- Goldstein, B.; Kim, D.; Xu, J.; Vanderlick, T.K.; Culurciello, E. CMOS low current measurement system for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.H.; Genov, R. A Fully Differential CMOS Potentiostat. In Proceedings of the IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 2177–2180.
- Ferrari, G.; Gozzini, F.; Sampietro, M. Very high sensitivity CMOS circuit to track fast biological current signals. In Proceedings of the IEEE Biomedical Circuits Systems Conference, New Orleans, LA, USA, 29 November–1 December 2006; pp. 53–56.
- Ferrari, G.; Gozzini, F.; Sampietro, M. A current-sensitive front-end amplifier for nano-biosensors with a 2 MHz BW. In Proceedings of the IEEE International Solid-State Circuits Conference on Digest of Technical Papers (ISSCC 2007), San Francisco, CA, USA, 11–15 February 2007; pp. 164–165.
- Ferrari, G.; Farina, M.; Guagliardo, F.; Carminati, M.; Sampietro, M. Ultra-low-noise CMOS current preamplifier from DC to 1 MHz. Electron. Lett. 2009, 45, 1278–1280. [Google Scholar] [CrossRef]
- Li, H.; Parsnejad, S.; Mason, A.J. Single ion channel CMOS electrochemical instrument for high throughput recording arrays. In Proceedings of the 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; pp. 1–4.
- Li, H.; Boling, S.; Mason, A.J. Power efficient instrumentation with 100 fA-sensitivity and 164 dB-dynamic range for wearable chronoamperometric gas sensor arrays. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 485–488.
- Stagni, C.; Guiducci, C.; Benini, L.; Ricco, B.; Carrara, S.; Samori, B.; Paulus, C.; Schienle, M.; Augustyniak, M.; Thewes, R. CMOS DNA Sensor Array With Integrated A/D Conversion Based on Label-Free Capacitance Measurement. IEEE J. Solid-State Circuits 2006, 41, 2956–2964. [Google Scholar] [CrossRef]
- Ahmadi, M.M.; Jullien, G.A. A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.M.; Genov, R. CMOS Impedance Spectrum Analyzer with Dual-Slope Multiplying ADC. In Proceedings of the IEEE Biomedical Circuits Systems Conference, San Diego, CA, USA, 10–12 November 2011.
- Gozzini, F.; Ferrari, G.; Sampietro, M. An Instrumenton-chip for Impedance Measurements on Nanobiosensors with AttoFarad Resolution. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 8–12 February 2009; pp. 346–347.
- Manickam, A.; Chevalier, A.; McDermott, M.; Ellington, A.D.; Hassibi, A. A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Manickam, A.; Chevalier, A.; McDermott, M.; Ellington, A.D.; Hassibi, A. A CMOS electrochemical impedance spectroscopy biosensor array for label-free biomolecular detection. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 7–11 February 2010; pp. 130–131.
- Jafari, H.; Soleymani, L.; Genov, R. 16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Bianchi, D.; Rottigni, A.; Sampietro, M. CMOS impedance analyzer for nanosamples investigation operating up to 150 MHz with Sub-aF resolution. In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; pp. 292–293.
- Rairigh, D.; Yang, C.; Mason, A. Analysis of On-Chip Impedance Spectroscopy Methodologies for Sensor Arrays. Sens. Lett. 2006, 4, 398–402. [Google Scholar] [CrossRef]
- Min, M.; Parve, T. Improvement of lock-in electrical bio-impedance analyzer for implantable medical devices. IEEE Trans. Instrum. Meas. 2007, 56, 968–974. [Google Scholar] [CrossRef]
- Yúfera, A.; Rueda, A.; Munoz, J.M.; Doldán, R.; Leger, G.; Rodriguez-Villegas, E.O. A tissue impedance measurement chip for myocardial ischemia detection. IEEE Trans. Circuits Syst. I 2005, 52, 2620–2628. [Google Scholar] [CrossRef]
- Welch, D.; Christen, J.B. Seamless integration of CMOS and microfluidics using flip chip bonding. J. Micromech. Microeng. 2013, 23, 035009. [Google Scholar] [CrossRef]
- Li, W.; Rodger, D.C.; Meng, E.; Weiland, J.D.; Humayun, M.S.; Tai, Y.C. Wafer-level parylene packaging with integrated RF electronics for wireless retina prostheses. J. Microelectromech. Syst. 2010, 19, 735–742. [Google Scholar] [CrossRef]
- Frey, U.; Sedivy, J.; Heer, F.; Pedron, R.; Ballini, M.; Mueller, J.; Bakkum, D.; Hafizovic, S.; Faraci, F.D.; Greve, F. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 2010, 45, 467–482. [Google Scholar] [CrossRef]
- Huang, Y.; Mason, A.J. Lab-on-CMOS integratio nof microfluidics and electrochemical sensors. Lab Chip 2013, 13, 3929–3934. [Google Scholar] [CrossRef] [PubMed]
- Datta-Chaudhuri, T.; Abshire, P.; Smela, E. Packaging commercial CMOS chips for lab on a chip integration. Lab Chip 2014, 14, 1753–1766. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mason, A. Development of an integrated CMOS-microfluidic instrumentation array for high throughput membrane protein studies. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014.
- Ghafar-Zadeh, E.; Sawan, M.; Therriault, D. Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sens. Actuators A Phys. 2007, 134, 27–36. [Google Scholar] [CrossRef]
- Christen, J.B.; Andreou, A.G. Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Heer, F.; Hafizovic, S.; Franks, W.; Blau, A.; Ziegler, C.; Hierlemann, A. CMOS microelectrode array for bidirectional interaction with neuronal networks. IEEE J. Solid-State Circuits 2006, 41, 1620–1629. [Google Scholar] [CrossRef]
- Hogervorst, R.; Tero, J.P.; Eschauzier, R.G.; Huijsing, J.H. A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries. IEEE J. Solid-State Circuits 1994, 29, 1505–1513. [Google Scholar] [CrossRef]
- Yin, H.; Li, L.; Mason, A.J. Screen-printed planar metallization for lab-on-CMOS with epoxy carrier. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2887–2890.
- Hwang, S.; Lafratta, C.N.; Agarwal, V.; Yu, X.; Walt, D.R.; Sonkusale, S. CMOS microelectrode array for electrochemical lab-on-a-cihp applications. IEEE J. Sens. 2009, 9, 609–615. [Google Scholar] [CrossRef]
- Niitsu, K.; Ota, S.; Gamo, K.; Kondo, H.; Hori, M.; Nakazato, K. Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Mason, A.J. Die-level photolithography and etchless parylene packaging processes for on-CMOS electrochemical biosensors. In Proceedings of the International Symposium on Circuits and Systems, Seoul, Korea, 20–23 May 2012; pp. 2401–2404.
- Sansen, W.; Wachter, D.D.; Callewaert, L.; Lambrechts, M.; Claes, A. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sens. Actuators B Chem. 1990, 1, 298–302. [Google Scholar] [CrossRef]
- Klare, P.; Herrmann, S.; Berthold, F.; Vonau, W. Lab-on-Chip-Messsystem. In Elektrochemische Grundlagenforschung und deren Anwendung in der Elektroanalytik; Die Deutsche Bibliothek: Frankfurt, Germany, 2006; pp. 111–114. [Google Scholar]
- Huang, I.; Huang, R.; Lo, L. Improvement of integrated Ag/AgCl thin-film electodes by KCl-gel coating for ISFET applications. Sens. Actuators B Chem. 2003, 94, 53–64. [Google Scholar] [CrossRef]
- Lauks, I.; Maczuszenko, A. Heterogeneous Membrane Electrodes. WO Patent App. PCT/CA2003/001,841, 27 November 2003. [Google Scholar]
- Rahman, M.A.; Kwon, N.-H.; Won, M.-S.; Choe, E.S.; Shim, Y.-B. Functionalized conducting polymer as an enzyme-immobilizing substrate: An amperometric glutamate microbiosensor for in vivo measurements. Anal. Chem. 2005, 77, 4854–4860. [Google Scholar] [CrossRef] [PubMed]
- Kinlen, P.J.; Heider, J.E.; Hubbard, D.E. A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sens. Actuators B Chem. 1994, 22, 13–25. [Google Scholar] [CrossRef]
- Curry, K.M. Method and Apparatus for Using Flex Circuit Technology to Create a Reference Electrode Channel. WIPO Patent 2,007,100,644, 22 February 2007. [Google Scholar]
- Shin, J.H.; Lee, S.D.; Nam, H.; Cha, G.S.; Bae, B.W. Miniaturized Solid-State Reference Electrode with Self-Diagnostic Function. U.S. Patent 6,554,982, 29 April 2003. [Google Scholar]
- Cha, G.S.; Cui, G.; Yoo, J.; Lee, J.S.; Nam, H. Planar Reference Electrode. U.S. Patent 6,964,734, 15 November 2005. [Google Scholar]
- Suzuki, H.; Shiroishi, H.; Sasaki, S.; Karube, I. Microfabricated liquid junction Ag/AgCl reference electrode and its application to a one-chip potentiometric sensor. Anal. Chem. 1999, 71, 5069–5075. [Google Scholar] [CrossRef]
- Han, J.; Park, S.; Boo, H.; Kim, H.C.; Nho, J.; Chung, T.D. Solid-State Reference Electrode Based on Electrodeposited Nanoporous Platinum for Microchip. Electroanalysis 2007, 19, 786–792. [Google Scholar] [CrossRef]
- Kwon, N.-H.; Lee, K.-S.; Won, M.-S.; Shim, Y.-B. An all-solid-state reference electrode based on the layer-by-layer polymer coating. Analyst 2007, 132, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Prodromakis, T.; Georgiou, P.; Constandinou, T.G.; Michelakis, K.; Toumazou, C. Batch encapsulation technique for CMOS based chemical sensors. In Proceedings of the IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, USA, 18–21 November 2008; pp. 321–324.
- Oelßner, W.; Zosel, J.; Guth, U.; Pechstein, T.; Babel, W.; Connery, J.G.; Demuth, C.; Grote Gansey, M.; Verburg, J.B. Encapsulation of ISFET sensor chips. Sens. Actuators B Chem. 2005, 105, 104–117. [Google Scholar] [CrossRef]
- Dumschat, C.; Müller, H.; Rautschek, H.; Timpe, H.J.; Hoffmann, W.; Pham, M.T.; Hüller, J. Encapsulation of chemically sensitive field-effect transistors with photocurable epoxy resins. Sens. Actuators B Chem. 1990, 2, 271–276. [Google Scholar] [CrossRef]
- Prodromakis, T.; Michelakis, K.; Zoumpoulidis, T.; Dekker, R.; Toumazou, C. Biocompatible encapsulation of CMOS based chemical sensors. In Proceedings of the IEEE Internationa Conference on Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 791–794.
- Brunnbauer, M.; Fürgut, E.; Beer, G.; Meyer, T.; Hedler, H.; Belonio, J.; Nomura, E.; Kiuchi, K.; Kobayashi, K. An embedded device technology based on a molded reconfigured wafer. In Proceedings of the 56th Electronic Components and Technology Conference, San Diego, CA, USA, 30 May–2 June 2006.
- Keser, B.; Amrine, C.; Duong, T.; Fay, O.; Hayes, S.; Leal, G.; Lytle, W.; Mitchell, D.; Wenzel, R. The Redistributed Chip Package: A Breakthrough for Advanced Packaging. In Proceedings of the 57th Electronic Components and Technology Conference (ECTC’07), Sparks, NV, USA, 29 May–1 June 2007; pp. 286–291.
- Kumar, A.; Dingwei, X.; Sekhar, V.N.; Lim, S.; Keng, C.; Sharma, G.; Rao, V.S.; Kripesh, V.; Lau, J.H.; Kwong, D.-L. Wafer level embedding technology for 3D wafer level embedded package. In Proceedings of the 59th Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2009; pp. 1289–1296.
- Souriau, J.-C.; Lignier, O.; Charrier, M.; Poupon, G. Wafer level processing of 3D system in package for RF and data application. In Proceedings of the 55th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 30 May–2 June 2005; pp. 356–361.
Maximum Input Current | Sensitivity | RMS Noise | Dynamic Range | Power/Channel | Process | Circuit Structure | Target | Target Concentration | |
---|---|---|---|---|---|---|---|---|---|
JSSC87 [45] | 3.5 µA | 100 nA | - | 31 dB | <2 mW | 5 μm | Current conveyor | Glucose | 0–24.5 mM |
ISSCC94 [53] | 40 µA | 100 fA | - | 172 dB | 5 mW | 2 μm | Integrator + dual-slope ADC | Cu2+ | 0.5 ppm |
JSSC04 [65] | 100 nA | 10 pA | - | >100 dB | - | 0.5 µm | Integration ADC | DNA | - |
TCAS06 [56] | 100 nA | 50 fA | - | 60 dB | 11 μW | 0.5 μm | Semi-synchronous Σ∆ ADC | Bacillus Cereus | 0–106 CFU/mL |
TCAS06 [66] | 50 µA | - | 46 pA | 120 dB | 781 µW | 1.2 µm | Integration ADC | Dopamine | 0-175 µM |
Sensors06 [57] | 200 nA | 1 pA | - | 116 dB | >130 µW | 0.5 µm | Integration ADC | KCl | 0.01–1 M |
TCAS07 [55] | 400 pA | 20 pA | 110 fA | 26 dB | 1 µW | 0.5 μm | Half-amplifier structure; CDS | - | - |
TbioCAS07 [67] | 0.5 µA | 100 fA | - | 140 dB | 1.3 mW | 0.5 µm | Feedback modulation Σ∆ ADC | Dopamine | 0–5 µM |
JSSC08 [50] | 110 nA | ~240 pA | - | ~53 dB | - | 0.25 μm | Dual-slope ADC | DNA | - |
TCAS09 [47] | 1 µA | 1 nA | - | 60 dB | 70 µW | 0.18 µm | Current mirror + I-F ADC 1 | Glucose | 0–38 mM |
TBioCAS09 [54] | 47 µA | 1 pA | - | 120 dB | - | 0.5 μm | CDS | Alcohol dehydrogenase | 0–25 mM |
TbioCAS13 [68] | 350 nA | 24 pA | - | 95 dB | 188 µW | 0.35 µm | I-F + Single slope ADC 1 | Dopamine | 0–80 µM |
TCAS13 [69] | 350 nA | 8.6 pA | 0.13 pA | 92 dB | 4 µW | 0.13 µm | Current conveyor | K3[Fe(CN)6] | 0–2 µM |
TCAS14 [70] | 32 µA | - | - | - | 25 µW | 2.5 µm | All-CMOS Σ∆ ADC | K4[Fe(CN)6] | 0.1–1.1 mM |
TBioCAS16 [71] | 16 µA | 100 fA | - | 164 dB | 241 µW | 0.5 µm | Input modulated Σ∆ ADC | O2 | 0%–20% |
TBioCAS15 [72] | 50 nA | - | 480 fA | 104 dB | 12.1 µW | 0.18 µm | SAR ADC | Dopamine | 0–40 µM |
TI-LMP9100x | 750 µA | 5 µA | - | 43.5 dB | 33 µW | - | Resistive feedback TIA | Gas/glucose | - |
Circuit Structure | Frequency Range | Current Range | Process | Power | Target | |
---|---|---|---|---|---|---|
JSSC09 [16] | Lock-in ΣΔ ADC | 10 MHz–10 kHz | 78 fA–100 nA | 0.5 μm | 6 μW | Gramicidin ion channel |
TBioCAS10 [92] | analog mixer | 10 Hz–50 MHz | 330 pA–42 µA | 0.35 μm | 84.8 mW | DNA/protein |
TBioCAS12 [94] | Dual-slope multiplying ADC | 0.1 Hz–10 kHz | 320 fA–500 nA | 0.13 μm | 42 µW | Prostate cancer DNA |
TCAS05 [98] | Mixer, incremental ADC | - | - | 0.8 μm | 2.1 mW | Kidney ischemia |
ISSCC14 [95] | down/up conversion | 20 kHz–150 MHz | - | 0.35 μm | 0.14 W | - |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, X.; Li, L.; Mu, X.; Genov, R.; Mason, A.J. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review. Sensors 2017, 17, 74. https://doi.org/10.3390/s17010074
Li H, Liu X, Li L, Mu X, Genov R, Mason AJ. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review. Sensors. 2017; 17(1):74. https://doi.org/10.3390/s17010074
Chicago/Turabian StyleLi, Haitao, Xiaowen Liu, Lin Li, Xiaoyi Mu, Roman Genov, and Andrew J. Mason. 2017. "CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review" Sensors 17, no. 1: 74. https://doi.org/10.3390/s17010074
APA StyleLi, H., Liu, X., Li, L., Mu, X., Genov, R., & Mason, A. J. (2017). CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review. Sensors, 17(1), 74. https://doi.org/10.3390/s17010074