A Hyperspectral Survey of New York City Lighting Technology
<p>A false color image of a daytime scan of the NYC skyline with our hyperspectral instrument. For this image, RGB was mapped to <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>610</mn> <mrow> <mspace width="4pt"/> <mi>nm</mi> </mrow> <mo>,</mo> <mn>540</mn> <mrow> <mspace width="4pt"/> <mi>nm</mi> </mrow> <mo>,</mo> <mn>475</mn> <mrow> <mspace width="4pt"/> <mi>nm</mi> </mrow> <mo>)</mo> </mrow> </semantics> </math>. The near scene is northern Brooklyn; the mid-scene is the Manhattan Bridge and the East River; while the far scene is Midtown Manhattan.</p> "> Figure 2
<p>A night time version of the same scene as <a href="#sensors-16-02047-f001" class="html-fig">Figure 1</a> integrated from 0.4–1.0 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>m.</p> "> Figure 3
<p>Raw data from the scan in <a href="#sensors-16-02047-f002" class="html-fig">Figure 2</a> integrated across the full 0.4–1.0-<math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>m range. Artifacts due to chip offsets between the upper and lower half of the CCD, as well as gain changes during the scan (vertical stripes) are visible.</p> "> Figure 4
<p>Saturation spikes as saturated sources are read off of the CCD.</p> "> Figure 5
<p>The same as <a href="#sensors-16-02047-f003" class="html-fig">Figure 3</a> except a dark scan has been subtracted. Although the chip offset is mostly removed, there are clearly additional chip features roughly 1/4 and 3/4 along the vertical direction of the CCD (the gain artifacts are obviously not removed by the dark scan, as well).</p> "> Figure 6
<p>The raw, dark-subtracted (as in <a href="#sensors-16-02047-f005" class="html-fig">Figure 5</a>) and cleaned (using the method described in <a href="#sec2-sensors-16-02047" class="html-sec">Section 2</a>) spectra of the Manhattan Bridge region shown in the inset. Large-scale, wavelength-dependent artifacts have been removed.</p> "> Figure 7
<p>The 43 NOAA spectra measured by [<a href="#B43-sensors-16-02047" class="html-bibr">43</a>] in the lab. The wavelength range of 0.4–2.5 <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math>m extends beyond the range of the instrument used in this work, though the resolution of one nanometer is comparable to our VNIR instrument.</p> "> Figure 8
<p>The auto-correlation matrix of the spectra shown in <a href="#sensors-16-02047-f007" class="html-fig">Figure 7</a>. The high correlation between multiple examples of various lighting technologies (and in several cases between lighting technologies) implies that correlations with our spectra will only be able to identify type and not specific examples within a given type when correlating against the NOAA templates.</p> "> Figure 9
<p>The result of pruning the spectra shown in <a href="#sensors-16-02047-f007" class="html-fig">Figure 7</a> to only include templates that have low co-variance. In addition, the templates have been interpolated onto the wavelengths of our VNIR instrument (see <a href="#sec2dot2-sensors-16-02047" class="html-sec">Section 2.2</a>).</p> "> Figure 10
<p>The pixels used in our analysis. This active pixel mask was created by thresholding the cleaned data and then thresholding a smoothed version of the result. The effect is to remove noise pixels from thresholding while maintaining the edges of extended structures.</p> "> Figure 11
<p>An illustration of the Template-Activated Partition (TAP) clustering approach. From left to right, the full spectral sample is partitioned into subsets according to the correlation with NOAA templates, each subset is independently clustered by three unsupervised clustering methods, and the results are pooled with duplicates removed to form the final TAP cluster centers.</p> "> Figure 12
<p>Several examples of high S/N spectra in our sample that are correlated with the NOAA templates shown in <a href="#sensors-16-02047-f009" class="html-fig">Figure 9</a>. The bottom right spectrum is an example of a lighting technology that is not represented in the lab templates.</p> "> Figure 13
<p>The correlation coefficients for all 41,583 spectra in our dataset with each of the NOAA templates in <a href="#sensors-16-02047-f009" class="html-fig">Figure 9</a>. We clearly detect examples of 13 of the templates with high correlation coefficients. Interestingly, we do not find examples of incandescent light bulbs (see <a href="#sec4dot5-sensors-16-02047" class="html-sec">Section 4.5</a>).</p> "> Figure 14
<p>The result of clustering our ∼42,000 spectra into 15 clusters using <span class="html-italic">k</span>-means clustering. The red lines represent the cluster centers, while the yellow bands represent the dispersion of the cluster members for each cluster. It is clear that <span class="html-italic">k</span>-means is recovering dominant spectra for High Pressure Sodium (HPS) lamps, as well as fluorescent and metal halide lamps (see <a href="#sensors-16-02047-f015" class="html-fig">Figure 15</a>). Nevertheless, several of the cluster centers do not correspond to any NOAA templates, but are largely consistent with LED-type lights.</p> "> Figure 15
<p>A comparison of several of the <span class="html-italic">k</span>-means cluster centers from <a href="#sensors-16-02047-f014" class="html-fig">Figure 14</a> with NOAA templates.</p> "> Figure 16
<p>A projection of the cluster tags for several cluster centers on the integrated image of <a href="#sensors-16-02047-f002" class="html-fig">Figure 2</a> (<b>top</b>). The associated spectra (with corresponding colors) are shown in the <b>lower left</b>. A zoom-in of the Manhattan Bridge region is shown in the <b>lower right</b> demonstrating that detailed lighting technology use can be identified with our methodology.</p> "> Figure 17
<p>The results of performing template-activated partition clustering (see <a href="#sensors-16-02047-f011" class="html-fig">Figure 11</a> and <a href="#sec4dot2dot2-sensors-16-02047" class="html-sec">Section 4.2.2</a>) on our dataset to identify all statistically-robust observed lighting types. The methods of clustering used were <span class="html-italic">k</span>-means, DBSCAN and hierarchical.</p> "> Figure 18
<p>The aggregate spectrum of <span class="html-italic">all</span> pixels in our scene. The integrated spectrum of the NYC skyline is dominated by HPS-type lighting with strong peaks in the <math display="inline"> <semantics> <mi>Na</mi> </semantics> </math>-<math display="inline"> <semantics> <mi mathvariant="normal">I</mi> </semantics> </math> and <math display="inline"> <semantics> <mi>Na</mi> </semantics> </math>-<math display="inline"> <semantics> <mi>II</mi> </semantics> </math> bands, though we also identify <math display="inline"> <semantics> <mi>Hg</mi> </semantics> </math>and <math display="inline"> <semantics> <mi>Eu</mi> </semantics> </math>-<math display="inline"> <semantics> <mi>III</mi> </semantics> </math> lines that are common in fluorescent lighting.</p> ">
Abstract
:1. Introduction
2. Data Acquisition and Reduction
2.1. Data Reduction
2.2. Supplementary Data
3. Methodology
3.1. k-Means Clustering
3.2. Template-Activated Partition Clustering
4. Results
4.1. Correlation with Known Templates
4.2. Unsupervised Learning
4.2.1. k-Means Clustering
4.2.2. Template-Activated Partition Clustering
4.3. Aggregate Spectrum
4.4. Applications
4.5. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schernhammer, E.S.; Laden, F.; Speizer, F.E.; Willett, W.C.; Hunter, D.J.; Kawachi, I.; Colditz, G.A. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J. Natl. Cancer Inst. 2001, 93, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Stevens, R.G.; Haim, A.; Portnov, B.A. Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control 2010, 21, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Lockley, S.W.; Brainard, G.C.; Czeisler, C.A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 2003, 88. [Google Scholar] [CrossRef] [PubMed]
- Navara, K.J.; Nelson, R.J. The dark side of light at night: Physiological, epidemiological, and ecological consequences. J. Pineal Res. 2007, 43, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Le Tallec, T.; Perret, M.; Théry, M. Light pollution modifies the expression of daily rhythms and behavior patterns in a nocturnal primate. PLoS ONE 2013, 8, e79250. [Google Scholar] [CrossRef] [PubMed]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Gauthreaux, S.A., Jr.; Belser, C.G.; Rich, C.; Longcore, T. Effects of artificial night lighting on migrating birds. In Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington, DC, USA, 2006; pp. 67–93. [Google Scholar]
- Welch, R. Monitoring urban population and energy utilization patterns from satellite data. Remote Sens. Environ. 1980, 9, 1–9. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Doll, C.H.; Muller, J.P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Doll, C.N.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Lo, C. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Briggs, D.J.; Gulliver, J.; Fecht, D.; Vienneau, D.M. Dasymetric modelling of small-area population distribution using land cover and light emissions data. Remote Sens. Environ. 2007, 108, 451–466. [Google Scholar] [CrossRef]
- Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. [Google Scholar] [CrossRef]
- Yang, X.; Yue, W.; Gao, D. Spatial improvement of human population distribution based on multi-sensor remote-sensing data: An input for exposure assessment. Int. J. Remote Sens. 2013, 34, 5569–5583. [Google Scholar] [CrossRef]
- Lo, C. Urban indicators of China from radiance-calibrated digital DMSP-OLS nighttime images. Ann. Assoc. Am. Geogr. 2002, 92, 225–240. [Google Scholar] [CrossRef]
- Letu, H.; Hara, M.; Yagi, H.; Naoki, K.; Tana, G.; Nishio, F.; Shuhei, O. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects. Int. J. Remote Sens. 2010, 31, 4443–4458. [Google Scholar] [CrossRef]
- He, C.; Ma, Q.; Liu, Z.; Zhang, Q. Modeling the spatiotemporal dynamics of electric power consumption in Mainland China using saturation-corrected DMSP/OLS nighttime stable light data. Int. J. Digit. Earth 2014, 7, 993–1014. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries. Energy 2016, 100, 177–189. [Google Scholar] [CrossRef]
- Ghosh, T.; Elvidge, C.D.; Sutton, P.C.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T. Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery. Energies 2010, 3, 1895–1913. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D.; Balk, D.; Montgomery, M. Spatial scaling of stable night lights. Remote Sens. Environ. 2011, 115, 269–280. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Pandey, B.; Joshi, P.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D. Night on Earth: Mapping decadal changes of anthropogenic night light in Asia. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 40–52. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Dobler, G.; Ghandehari, M.; Koonin, S.E.; Nazari, R.; Patrinos, A.; Sharma, M.S.; Tafvizi, A.; Vo, H.T.; Wurtele, J.S. Dynamics of the urban lightscape. Inf. Syst. 2015, 54, 115–126. [Google Scholar] [CrossRef]
- Kruse, F.A.; Elvidge, C.D. Identifying and mapping night lights using imaging spectrometry. In Proceedings of the 2011 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011; IEEE: New York, NY, USA, 2011; pp. 1–6. [Google Scholar]
- Kruse, F.A.; Elvidge, C.D. Characterizing urban light sources using imaging spectrometry. In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 10–13 April 2011; IEEE: New York, NY, USA, 2011; pp. 149–152. [Google Scholar]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. Spectral identification of lighting type and character. Sensors 2010, 10, 3961–3988. [Google Scholar] [CrossRef] [PubMed]
- Earth Observation Group—Defense Meteorological Satellite Progam, Boulder|ngdc.noaa.gov. Available online: https://www.ngdc.noaa.gov/eog/night_sat/nightsat.html (accessed on 30 November 2016).
- Richards, J.A.; Richards, J. Remote Sensing Digital Image Analysis; Springer: Heidelberg, Germany, 1999; Volume 3. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 27 December 1965–7 January 1966; Volume 1, pp. 281–297.
- Arthur, D.; Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035.
- Celebi, M.E.; Kingravi, H.A.; Vela, P.A. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 2013, 40, 200–210. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- NYC DOT—Press Releases—Expansion of Energy-Efficient LED-Light Installations Citywide. Available online: http://www.nyc.gov/html/dot/html/pr2012/pr12_19.shtml (accessed on 30 November 2016).
- Physical Sciences Center for Urban Science. Available online: http://serv.cusp.nyu.edu/~gdobler (accessed 30 November 2016).
- Puschnig, J.; Posch, T.; Uttenthaler, S. Night sky photometry and spectroscopy performed at the Vienna University Observatory. J. Quant. Spectrosc. Radiat. Transf. 2014, 139, 64–75. [Google Scholar] [CrossRef]
- Venable, K.; McGee, K.; McGarry, D.; Wightman, K.; Gutierrez, C.; Weiser, R.; Vanderford, B.; Knight, J.; Rasmussen, B.; Coverick, R.; et al. Image Recognition System for Automated Lighting Retrofit Assessment, 2013. Available online: http://oaktrust.library.tamu.edu/handle/1969.1/149181 (accessed on 30 November 2016).
- Kyba, C.C.; Ruhtz, T.; Fischer, J.; Hölker, F. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 2011, 6, e17307. [Google Scholar] [CrossRef] [PubMed]
- Kyba, C.; Ruhtz, T.; Fischer, J.; Hölker, F. Red is the new black: how the colour of urban skyglow varies with cloud cover. Mon. Not. R. Astron. Soc. 2012, 425, 701–708. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobler, G.; Ghandehari, M.; Koonin, S.E.; Sharma, M.S. A Hyperspectral Survey of New York City Lighting Technology. Sensors 2016, 16, 2047. https://doi.org/10.3390/s16122047
Dobler G, Ghandehari M, Koonin SE, Sharma MS. A Hyperspectral Survey of New York City Lighting Technology. Sensors. 2016; 16(12):2047. https://doi.org/10.3390/s16122047
Chicago/Turabian StyleDobler, Gregory, Masoud Ghandehari, Steven E. Koonin, and Mohit S. Sharma. 2016. "A Hyperspectral Survey of New York City Lighting Technology" Sensors 16, no. 12: 2047. https://doi.org/10.3390/s16122047
APA StyleDobler, G., Ghandehari, M., Koonin, S. E., & Sharma, M. S. (2016). A Hyperspectral Survey of New York City Lighting Technology. Sensors, 16(12), 2047. https://doi.org/10.3390/s16122047