Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory
<p>The block diagram of PTT target extraction from a PolSAR image.</p> "> Figure 2
<p>An example of the TF decomposition process. (<b>a</b>) the data of the HH channel; (<b>b</b>) the spectrum of the HH channel; and (<b>c</b>) the spectrum after compensation.</p> "> Figure 3
<p>An example of TF decomposition result (<span class="html-italic">Q</span> = 4). (<b>a</b>) sub-image 1; (<b>b</b>) sub-image 2; (<b>c</b>) sub-image 3; and (<b>d</b>) sub-image 4.</p> "> Figure 4
<p>The process of 2D TF analysis.</p> "> Figure 5
<p>(<b>a</b>) a schematic representation of rectangle <span class="html-italic">R</span>; (<b>b</b>) a local rectangle window covered <span class="html-italic">R</span> with three parts; and (<b>c</b>) the rectangle <span class="html-italic">R</span> divided into <span class="html-italic">C</span> parts.</p> "> Figure 6
<p>The flowchart of PTT series extraction.</p> "> Figure 7
<p>Pauli color coded image of Inner Mongolia. (<b>a</b>) original PolSAR image; and (<b>b</b>) marked image.</p> "> Figure 8
<p>(<b>a</b>) filtered image based on PWF; (<b>b</b>) point-like target detection results; (<b>c</b>) a-contrario extraction result; and (<b>d</b>) extraction result marked on the original image.</p> "> Figure 8 Cont.
<p>(<b>a</b>) filtered image based on PWF; (<b>b</b>) point-like target detection results; (<b>c</b>) a-contrario extraction result; and (<b>d</b>) extraction result marked on the original image.</p> "> Figure 9
<p>(<b>a</b>) filtered image based on TF analysis; (<b>b</b>) point-like target detection results; (<b>c</b>) a-contrario extraction result; and (<b>d</b>) extraction result marked on the original image.</p> "> Figure 10
<p>Pauli color coded image of Niigata Site Area. (<b>a</b>) original PolSAR image; and (<b>b</b>) marked image.</p> "> Figure 11
<p>(<b>a</b>) filtered image based on PWF; and (<b>b</b>) point-like target detection results.</p> "> Figure 12
<p>(<b>a</b>) filtered image based on TF analysis; (<b>b</b>) point-like target detection results; (<b>c</b>) a-contrario extraction result; and (<b>d</b>) extraction results marked on the original image.</p> "> Figure 12 Cont.
<p>(<b>a</b>) filtered image based on TF analysis; (<b>b</b>) point-like target detection results; (<b>c</b>) a-contrario extraction result; and (<b>d</b>) extraction results marked on the original image.</p> "> Figure 13
<p>Pauli color coded image of Linshui City in Hainan Province. (<b>a</b>) original PolSAR image; and (<b>b</b>) marked image.</p> "> Figure 14
<p>(<b>a</b>) filtered image based on PWF ; and (<b>b</b>) point-like target detection results.</p> "> Figure 15
<p>(<b>a</b>) filtered image based on TF analysis (<b>b</b>) point-like target detection results; (<b>c</b>) a-contrario extraction results; and (<b>d</b>) extraction results marked on the original image.</p> "> Figure 15 Cont.
<p>(<b>a</b>) filtered image based on TF analysis (<b>b</b>) point-like target detection results; (<b>c</b>) a-contrario extraction results; and (<b>d</b>) extraction results marked on the original image.</p> ">
Abstract
:1. Introduction
2. Point-Like Target Detection
2.1. 2D TF Analysis
2.1.1. TF Decomposition
- According to the set of sub-spectrum number Q, the spectrum is divided into Q sub-spectra.
- Multiplied with a weighting function, each sub-spectrum then is set back to the spatial domain using a 2D inverse Fourier Transform in order to get sub-images, as shown in Figure 3a–d.
2.1.2. Second Order Statistics
2.1.3. Non-Stationary Media Detection and Analysis
2.2. CA-CFAR Point-Like Target Detector
3. Linear Arranged Target Extraction Based on A-Contrario Theory
3.1. A-Contrario Hypothesis
3.2. A Reasonable Geometric Structure
4. Experimental Results and Analysis
4.1. Experiment I
4.2. Experiment II
4.3. Experiment III
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SAR | Synthetic aperture radar |
PTT | Power transmission tower |
PolSAR | Polarimetric synthetic aperture radar |
PWF | Polarimetric whitening filter |
TF | Time-frequency |
CFAR | Constant false alarm rate |
CA-CFAR | Cell-averaging constant false alarm rate |
2D | Two-dimensional |
SLC | Single-look complex |
Probability density function |
References
- Salazar, I.; Salomon, J. Detection Schemes for Synthetic-Aperture Radar Imagery Based on a Beta Prime Statistical Model. Ph.D. Thesis, The University of New Mexico, Albuquerque, NM, USA, July 1999. [Google Scholar]
- Gao, G. Review on The Statistical Modeling of SAR Images. Signal Process. 2009, 25, 1270–1278. [Google Scholar]
- Leena, M.; Matti, L.; Eero, A.; Juha, H.; Mika, K.; Anttoni, J.; Antero, K.; Tero, H. Remote sensing methods for power line corridor surveys. ISPRS J. Photogramm. Remote Sens. 2016, 119, 10–31. [Google Scholar]
- Zhang, H.; Bi, G.; Yang, W.; Razul, S.G.; See, C.-M. IF Estimation of FM Signals based on Time-Frequency Image. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 326–343. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L.; Xia, G.-S. Iterative Time-Frequency Filtering of Sinusoidal Signals With Updated Frequency Estimation. IEEE Signal Process. Lett. 2016, 23, 139–143. [Google Scholar] [CrossRef]
- Novak, L.; Halversen, S.; Owirka, G.; Hiett, M. Effects of polarization and resolution on the performance of a SAR automatic target recognition system. Linc. Lab. J. 1995, 8, 49–68. [Google Scholar]
- Sarabandi, K.; Park, M. Extraction of power line maps from millimeter-wave polarimetric SAR images. IEEE Trans. Antennas Propag. 2000, 48, 1802–1809. [Google Scholar] [CrossRef]
- Liao, J.; Shao, Y.; Wang, S. Monitoring for 2003 Huai River Flood in China Using Multisource SAR Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 2260–2263.
- Yang, W.; Xu, G.; Chen, J.; Sun, H. Power Transmission Towers Extraction in Polarimetric SAR Imagery Based on Genetic Algorithm. In Intelligent Computing in Signal Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2006; pp. 410–420. [Google Scholar]
- Yang, W.; Zhang, H.; Chen, J.; Sun, H. Automatic Detection of Power Transmission Series in Full Polarimetric SAR Imagery. In Proceedings of the IEEE Radar Conference, Boston, MA, USA, 17–20 April 2007; pp. 789–793.
- Zhang, H.; Yang, W.; Zhou, T.; Sun, H. Automatic extraction of power transmission tower series from PolSAR imagery based on MRF model. In Proceedings of the 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 788–792.
- Yang, W.; Yin, X.; Xia, G.-S. Learning High-level Features for Satellite Image Classification With Limited Labeled Samples. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4472–4482. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.; Xu, L.; Zhang, W. High voltage transmission-tower detection method based on high-resolution remote sensing image. J. Electr. Power Sci. Technol. 2012, 27, 47–51. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Z.; Gong, H.; Lu, S.; Tian, D.; Wuhan Nari Limited Liability Company of State Grid Electric Power Research Institute. Power transmission-tower detection for SAR images based on SIRV model. Eng. J. Wuhan Univ. 2013, 46, 737–741. [Google Scholar]
- Yang, L.; Zhao, L.; Bi, G.; Zhang, L. SAR Ground Moving Target Imaging Algorithm Based on Parametric and Dynamic Sparse Bayesian Learning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2254–2267. [Google Scholar] [CrossRef]
- Yang, L.; Bi, G.; Xing, M.; Zhang, L. Airborne SAR Moving Target Signatures and Imagery Based on LVD. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5958–5971. [Google Scholar] [CrossRef]
- Siddiq, K.; Irshad, M. Analysis of the cell averaging CFAR in Weibull background using a distribution approximation. In Proceedings of the 2nd International Conference on Computer, Control and Communication, Karachi, Pakistan, 17–18 February 2009; pp. 1–5.
- Huang, X.; Yang, W.; Zhang, H.; Xia, G.S. Automatic Ship Detection in SAR Images Using Multi-Scale Heterogeneities and an a Contrario Decision. Remote Sens. 2015, 7, 7695–7711. [Google Scholar] [CrossRef]
- Ferro-Famil, L.; Reigber, A.; Pottier, E.; Boerner, W.M. Scene characterization using subaperture polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2264–2276. [Google Scholar] [CrossRef]
- Ferro-famil, L.; Reigber, A.; Pottier, E. Nonstationary natural media analysis from polarimetric SAR data using a two-dimensional time-frequency decomposition approach. Can. J. Remote Sens. 2005, 31, 21–29. [Google Scholar] [CrossRef]
- Hu, C.; Ferro-Famil, L.; Kuang, G. Ship Discrimination Using Polarimetric SAR Data and Coherent Time-Frequency Analysis. Remote Sens. 2013, 5, 6899–6920. [Google Scholar] [CrossRef] [Green Version]
- Flandrin, P. Temps - Fréquence; Hermès: Paris, Franch, 1993. [Google Scholar]
- Ferro-Famil, L.; Reigber, A. Complex scene analysis from Time-Frequency statistics of POLSAR data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 5182–5185.
- Muirhead, R. Aspects of Multivariate Statistical Theory; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Gao, G. An Improved Scheme for Target Discrimination in High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 277–294. [Google Scholar] [CrossRef]
- Greig, D.; Denny, M. Knowledge-based methods for small object detection in SAR images. Proc. SPIE 2003, 4883, 121–130. [Google Scholar]
- Wu, D. The Application and Prospect of Mathematical Morphology in Image Processing and Analysis. J. Eng. Graphics 2003, 24, 120–125. [Google Scholar]
- Lezama, J.; Morel, J.; Randall, G.; von Gioi, R,G. A Contrario 2D Point Alignment Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 499–512. [Google Scholar] [CrossRef]
- Li, L. Spatial color image retrieval without segmentation based on thumbnails and the earth mover’s distance. J. Liaoning Univ. Pet. Chem. Technol. 2009, 29, 73–75. [Google Scholar]
- Desolneux, A. A probabilistic grouping principle to go from pixels to visual structures. In Discrete Geometry for Computer Imagery; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–12. [Google Scholar]
False alarm probability | 0.001 | Min number of points in a rectangle | 5 |
The size of target window | Max number of false alarm | 1 | |
The size of protect window | Min rectangle width | 1 | |
The size of clutter window | Max ratio of width and height | 20 |
Method | Total Number of PTT Targets | The Number of Detected PTT Targets | PTT Target Detection Rate | False Alarm Rate of CFAR (Targets Wrongly Detected as PTT) | Whether PTT Series Are Extracted Successfully |
---|---|---|---|---|---|
PWF + a-contrario | 10 | 7 | 70% | 77.42% | Yes |
TF + a-contrario | 10 | 10 | 100% | 69.70% | Yes |
False alarm probability | 0.001 | Min number of points in a rectangle | 5 |
The size of target window | Max number of false alarm | 1 | |
The size of protect window | Min rectangle width | 1 | |
The size of clutter window | Max ratio of width and height | 20 |
Method | Total Number of PTT Targets | The Number of Detected PTT Targets | PTT Target Detection Rate | False Alarm Rate of CFAR (Targets Wrongly Detected as PTT) | Whether PTT Series Are Extracted Successfully |
---|---|---|---|---|---|
PWF + a-contrario | 7 | 6 | 85.71% | >90% | No |
TF + a-contrario | 7 | 6 | 85.71% | 75.76% | Yes |
False alarm probability | 0.001 | Min number of points in a rectangle | 4 |
The size of target window | Max number of false alarm | 1 | |
The size of protect window | Min rectangle width | 1 | |
The size of clutter window | Max ratio of width and height | 25 |
Method | Total Number of PTT Targets | The Number of Detected PTT Targets | PTT Target Detection Rate | False Alarm Rate of CFAR (Targets Wrongly Detected as PTT) | Whether PTT Series Are Extracted Successfully |
---|---|---|---|---|---|
PWF + a-contrario | 14 | 11 | 78.57% | >90% | No |
TF + a-contrario | 14 | 14 | 100% | 58.82% | Yes |
Method/Time Cost | First Step (PWF or TF) | Second Step (CA-CFAR) | Third Step (A-Contrario) | Total Time (The Sum of Three Steps) |
---|---|---|---|---|
PWF + a-contrario | 23.78 s | 76,345.38 s | – | 76,369.16 s |
TF + a-contrario | 428.75 s | 5299.54 s | 1.74 s | 5730.03 s |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, D.; Zhang, H.; Guo, W.; Yang, W. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory. Sensors 2016, 16, 1862. https://doi.org/10.3390/s16111862
Peng D, Zhang H, Guo W, Yang W. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory. Sensors. 2016; 16(11):1862. https://doi.org/10.3390/s16111862
Chicago/Turabian StylePeng, Dongqing, Haijian Zhang, Wei Guo, and Wen Yang. 2016. "Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory" Sensors 16, no. 11: 1862. https://doi.org/10.3390/s16111862
APA StylePeng, D., Zhang, H., Guo, W., & Yang, W. (2016). Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory. Sensors, 16(11), 1862. https://doi.org/10.3390/s16111862