A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling
<p>Schematic of the surveying method.</p> "> Figure 2
<p>3D graphic model of the complete FOG-based IMU.</p> "> Figure 3
<p>Principle of the accelerometer signal acquisition.</p> "> Figure 4
<p>Block diagram of navigation computer.</p> "> Figure 5
<p>Coordinate and attitude angle diagram.</p> "> Figure 6
<p>The coordinate transformation process.</p> "> Figure 7
<p>MCM stationary survey.</p> "> Figure 8
<p>Flowchart of the experiment.</p> "> Figure 9
<p>Three-dimensional figure of the oil borehole trajectory.</p> "> Figure 10
<p>FOG-based MWD prototype testing.</p> "> Figure 11
<p>Attitude angle errors. (<b>a</b>) Inclination angle error; (<b>b</b>) Toolface angle error; (<b>c</b>) Azimuth angle error.</p> "> Figure 12
<p>Position errors calculated by the pure navigation. (<b>a</b>) East error; (<b>b</b>) North error.</p> "> Figure 13
<p>Position errors calculated by the integrated surveying algorithms. (<b>a</b>) East error; (<b>b</b>) North error; (<b>c</b>) Vertical error; (<b>d</b>) Horizontal error.</p> ">
Abstract
:1. Introduction
2. Theory of FOG-Based Measurement While Drilling
2.1. Overall Design of FOG-Based MWD
2.2. Structure of The Developed FOG-Based MWD
2.3. Hardware Design
2.4. Mathematical Calculation
2.4.1. Relationship between MWD Body Coordinates and Navigation Coordinates
2.4.2. Inertial Navigation Algorithm
3. The Long-Term Surveying Method
3.1. FOG-Based MWD Error Model
3.2. Method of Integrated Navigation
3.3. Kalman Filter Design
3.3.1. State-Space System Model
3.3.2. Observation Updates Model
4. Semi-Physics Simulation
4.1. Trajectory Design
4.2. Get Noise Data of the Inertial Sensors
4.3. Experiment Results and Analysis
5. Conclusions
Author Contributions
Conflicts of Interest
References
- El-Gizawy, M. Continuous Measurement-While-Drilling Surveying System Utilizing MEMS Inertial Sensors. Ph.D. Thesis, The University of Calgary, Calgary, AB, Canada, 2009. [Google Scholar]
- Noureldin, A. New Measurement-While-Drilling Surveying Technique Utilizing Sets of Fiber Optic Rotation Sensors. Ph.D. Thesis, The University of Calgary, Calgary, AB, Canada, 2002. [Google Scholar]
- Xue, Q.L.; Wang, R.H.; Sun, F.; Huang, L.L.; Han, L.J. Continuous measurement-while-drilling utilizing strap-down multi-model surveying system. IEEE Trans. Instrum. Meas. 2014, 63, 650–657. [Google Scholar]
- Ledroz, A.G.; Pecht, E.; Cramer, D.; Mintchev, M.P. FOG-based navigation in downhole environment during horizontal drilling utilizing a complete inertial measurement unit: Directional measurement-while-drilling surveying. IEEE Trans. Instrum. Meas. 2005, 54, 1997–2006. [Google Scholar] [CrossRef]
- Noureldin, A.; Tabler, H.; Irvine-Halliday, D.; Mintchev, M.P. Testing the applicability of fiber optic gyroscopes for azimuth monitoring for measurement-while-drilling processes in the oil industry. In Proceedings of the IEEE 2000 Position Location and Navigation Symposium, San Diego, CA, USA, 13–16 March 2000; pp. 291–298.
- Noureldin, A.; Irvine-Halliday, D.; Mintchev, M.P. Measurement-while-drilling surveying of highly inclined and horizontal well sections utilizing single-axis gyro sensing system. Meas. Sci. Technol. 2004, 15, 2426–2434. [Google Scholar] [CrossRef]
- Noureldin, A.; Irvine-Halliday, D.; Mintchev, M.P. Accuracy limitations of FOG-based continuous measurement-while-drilling surveying instruments for horizontal wells. IEEE Trans. Instrum. Means. 2002, 51, 1177–1191. [Google Scholar] [CrossRef]
- Li, T.; Yuan, G.; Li, W. Particle filter with novel nonlinear error model for miniature gyroscope-based measurement while drilling navigation. Sensors 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Poscente, M.; Filip, D.; Dimanchev, M.; Mintchev, M. Rotary in-drilling alignment using an autonomous MEMS-based inertial measurement unit for measurement-while-drilling processes. IEEE Instrum. Meas. Mag. 2013, 16, 26–34. [Google Scholar] [CrossRef]
- Torkildsen, T.; Havardstein, S.T.; Weston, J.L.; Ekseth, R. Prediction of Wellbore Position Accuracy When Surveyed with Gyroscopic Tools; Society of Petroleum Engineers: Richardson, TX, USA, 2008; pp. 5–12. [Google Scholar]
- Weston, J.L.; Ledroz, A.G.; Ekseth, R. New Gyro While Drilling Technology Delivers Accurate Azimuth and Real-Time Quality Control for All Well Trajectories; Society of Petroleum Engineers: Richardson, TX, USA, 2014; pp. 295–303. [Google Scholar]
- Grindrod, S.J.; Clark, P.J.; Lightfoot, J.D.; Bergstrom, N.; Grant, L.S. OWSG Standard Survey Tool Error Model Set for Improved Quality and Implementation in Directional Survey Management; Society of Petroleum Engineers: Richardson, TX, USA, 2016; pp. 1–14. [Google Scholar]
- Zhang, Y.S.; Wang, S.W.; Fang, J.C. Measurement-while-drilling instrument based on predigested inertial measurement unit. IEEE Trans. Instrum. Meas. 2012, 61, 3295–3302. [Google Scholar]
- Li, X.F.; Mao, Y.L.; Xie, L.; Chen, J.B.; Song, C.L. Applications of zero-velocity detector and Kalman filter in zero velocity update for inertial navigation system. In Proceedings of the IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 8–10 August 2014; pp. 1760–1763.
- Pecht, E.; Mintchev, M.P. Observability analysis for INS alignment in horizontal drilling. IEEE Trans. Instrum. Meas. 2007, 56, 1935–1945. [Google Scholar] [CrossRef]
- Jurkov, A.; Cloutier, J.; Pecht, E.; Mintchev, M. Experimental feasibility of the in-drilling-alignment method for inertial navigation in measurement-while-drilling. IEEE Trans. Instrum. Meas. 2011, 60, 1080–1090. [Google Scholar] [CrossRef]
- Rogers, R. Applied Mathematics in Integrated Navigation Systems, 3rd ed.; AIAA: Reston, VA, USA, 2003; pp. 77–84. [Google Scholar]
- Pan, J.Y.; Zhang, C.X.; Cai, Q.Z. An accurate calibration method of accelerometer nonlinear scale factor on a low-cost three-axis turntable. Meas. Sci. Technol. 2014, 25, 1–7. [Google Scholar] [CrossRef]
- Zhong, M.Y.; Guo, J.; Cao, Q. On designing PMI Kalman filter for INS/GPS integrated systems with unknown sensor errors. IEEE Sens. J. 2015, 15, 535–544. [Google Scholar] [CrossRef]
- Ning, X.L.; Liu, L.L. A two-mode INS/CNS navigation method for lunar rovers. IEEE Trans. Instrum. Meas. 2014, 63, 2170–2179. [Google Scholar] [CrossRef]
- Kim, S.B.; Bazin, J.C.; Lee, H.K.; Choi, K.H.; Park, S.Y. Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data. IET Radar Sonar Navig. 2011, 5, 814–823. [Google Scholar] [CrossRef]
- Chen, W.Q.; Guan, Z.C. Error analysis of well path survey calculation methods. J. China Univ. Pet. 2006, 30, 42–45. [Google Scholar]
- Tian, Y.W. Study on Optimization Methods of Directional Well Trajectory. Master’s Thesis, China University of Geosciences, Beijing, China, 2007. [Google Scholar]
- Taylor, H.L.; Mason, C.M. A systematic approach to well surveying calculations society of petroleum engineers. J. Soc. Pet. Eng. 1972, 12, 474–488. [Google Scholar] [CrossRef]
- El-Gizawy, M.; Noureldin, A.; El-Sheimy, N. Performance analysis of tactical grade inertial systems for MWD process. In Proceedings of IEEE Position, Location, and Navigation Symposium, San Diego, CA, USA, 25–27 April 2006; pp. 16–22.
- Hong, H.S.; Lee, J.G.; Park, C.G. In-Flight Alignment of SDINS under Large Initial Heading Error. Trans. Soc. Instrum. Control Eng. 2002, 38, 1107–1113. [Google Scholar] [CrossRef]
Parameter | Index | Unit |
---|---|---|
Dynamic Range | ±15 | g |
Bias Repeatability | 100 | μg |
Bias Temperature Coefficient | 100 | μg/°C |
Sensitivity Temperature Coefficient | 100 | ppm/°C |
Scale factor | 1.2 ± 0.2 | mA/g |
Temperature Range | −40~+175 | °C |
Classification | Methods |
---|---|
Straight line method | Average angle method (AAM) |
Broken line method | Balance tangent method (BTM) |
Curve method | Corrected average angle method (CAAM) |
Minimum curvature method (MCM) | |
Chord step method (CSM) |
Axis | Angular Random Walk (ARW) | Bias Stability (1σ) | |
---|---|---|---|
FOG/(°/√h) | FOG/(°/h) | Accelerometer (m/s2) | |
X | 0.0198 | 0.287 | |
Y | 0.0232 | 0.324 | |
Z | 0.0193 | 0.325 |
Methods Number | Methods Description |
---|---|
M1 | ZUPT |
M2 | Integrated with drilling pipe length |
M3 | Proposed algorithm |
Methods | Inclination (°) | Toolface (°) | Azimuth (°) |
---|---|---|---|
M1 | 0.0097 | 0.0802 | 0.6653 |
M2 | 0.0117 | 0.0470 | 0.6354 |
M3 | 0.0077 | 0.0230 | 0.5832 |
Methods | East (m) | North (m) | Vertical (m) | Horizontal (m) |
---|---|---|---|---|
M1 | 53.55 | 22.05 | 22.46 | 57.32 |
M2 | 31.60 | 2.19 | 4.56 | 31.67 |
M3 | 11.23 | 1.12 | 2.34 | 11.29 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Lin, T. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling. Sensors 2016, 16, 1186. https://doi.org/10.3390/s16081186
Zhang C, Lin T. A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling. Sensors. 2016; 16(8):1186. https://doi.org/10.3390/s16081186
Chicago/Turabian StyleZhang, Chunxi, and Tie Lin. 2016. "A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling" Sensors 16, no. 8: 1186. https://doi.org/10.3390/s16081186
APA StyleZhang, C., & Lin, T. (2016). A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling. Sensors, 16(8), 1186. https://doi.org/10.3390/s16081186