Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling
<p>Comparison of ideal filtering and matching filtering with <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> </mrow> </semantics> </math> 4 and 5. (<b>a</b>–<b>c</b>) show results of azimuthal resolution, PSLR, and ISLR during the entire orbital period, respectively. Results achieved with <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math> are as nearly identical to those attained by ideal filtering. With <math display="inline"> <semantics> <mrow> <msub> <mi>N</mi> <mi>r</mi> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math> , results are much worse.</p> "> Figure 2
<p>Illustration of GEO SAR geometry. (<b>a</b>) Observation geometry when the beam crosses the swath center; (<b>b</b>) Observation geometry when the beam crosses another target.</p> "> Figure 3
<p>Illustration of first azimuth time scaling. Three targets (T<sub>A</sub>, T<sub>B</sub> and T<sub>C</sub>) are in the same range cell. Because of azimuthal variance, their RCM curves vary in the time domain, as shown in (<b>a</b>); In the RD domain, only some parts of the curves coincide, as shown in (<b>b</b>); After first azimuth scaling, linear azimuth variance is corrected and the three curves in the RD domain are parallel, as demonstrated in (<b>c</b>).</p> "> Figure 4
<p>Illustration of geometric distortion. Two targets (T<sub>A</sub> and T<sub>B</sub>) are orignally located in the same range cell, and <math display="inline"> <semantics> <mrow> <msub> <mi>η</mi> <mi>c</mi> </msub> </mrow> </semantics> </math> for T<sub>B</sub> is zero. After imaging by proposed algorithm, T<sub>B</sub> is still at its original location. However, T<sub>A</sub> is focused at <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">A</mi> <mo>′</mo> </msubsup> </mrow> </semantics> </math>. Offsets in the range and azimuth directions are <math display="inline"> <semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mo>−</mo> <msubsup> <mi>P</mi> <mn>1</mn> <mo>‴</mo> </msubsup> </mrow> </semantics> </math> , respectively. All targets originally on red line are on dashed line after focusing. Therefore, the focusing results must be corrected from the dashed to red line by geometric correction, from <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">A</mi> <mo>′</mo> </msubsup> </mrow> </semantics> </math> to <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">A</mi> <mo>″</mo> </msubsup> </mrow> </semantics> </math> .</p> "> Figure 5
<p>Flowchart of the proposed algorithm.</p> "> Figure 6
<p>T<sub>5</sub> is at swath center. T<sub>1</sub> is 41.5 km and 43 km away from T<sub>5</sub> along azimuth and range, respectively.</p> "> Figure 7
<p>(<b>a</b>) Azimuth and (<b>b</b>) range profiles corresponding to every point target, represented by blue and red lines, respectively.</p> "> Figure 8
<p>The amplitude spectrum (<b>a</b>) and the contour map (<b>b</b>) corresponding to the imaging result of T<sub>5</sub>.</p> "> Figure 9
<p>Imaging profiles corresponding to T<sub>5</sub>. The first column represents the two-dimensional point spread function. The second and third columns represent azimuth and range profiles. (<b>a</b>–<b>c</b>) are achieved by applying the proposed algorithm, the algorithm in [<a href="#B15-sensors-16-01091" class="html-bibr">15</a>] and the algorithm in [<a href="#B17-sensors-16-01091" class="html-bibr">17</a>] respectively.</p> "> Figure 9 Cont.
<p>Imaging profiles corresponding to T<sub>5</sub>. The first column represents the two-dimensional point spread function. The second and third columns represent azimuth and range profiles. (<b>a</b>–<b>c</b>) are achieved by applying the proposed algorithm, the algorithm in [<a href="#B15-sensors-16-01091" class="html-bibr">15</a>] and the algorithm in [<a href="#B17-sensors-16-01091" class="html-bibr">17</a>] respectively.</p> "> Figure 10
<p>Imaging profiles corresponding to T<sub>3</sub>. The first column represents the two-dimensional point spread function. The second and third columns represent azimuth and range profiles. (<b>a</b>–<b>c</b>) are achieved by applying the proposed algorithm, the algorithm in [<a href="#B15-sensors-16-01091" class="html-bibr">15</a>] and the algorithm in [<a href="#B17-sensors-16-01091" class="html-bibr">17</a>] respectively.</p> "> Figure 10 Cont.
<p>Imaging profiles corresponding to T<sub>3</sub>. The first column represents the two-dimensional point spread function. The second and third columns represent azimuth and range profiles. (<b>a</b>–<b>c</b>) are achieved by applying the proposed algorithm, the algorithm in [<a href="#B15-sensors-16-01091" class="html-bibr">15</a>] and the algorithm in [<a href="#B17-sensors-16-01091" class="html-bibr">17</a>] respectively.</p> "> Figure 11
<p>Illustration of important curves and variables in RD domain. <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>g</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mo>′</mo> </msubsup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>g</mi> </mrow> <mo>′</mo> </msubsup> </mrow> </semantics> </math> represent migration curves corresponding to swath center and any target in the swath, respectively. <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>g</mi> <mo>,</mo> <mi>c</mi> </mrow> <mo>′</mo> </msubsup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>g</mi> <mo>,</mo> <mi>s</mi> </mrow> <mo>′</mo> </msubsup> </mrow> </semantics> </math> represent migration curves corresponding to any target whose <math display="inline"> <semantics> <mrow> <msub> <mi>η</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> before and after RCMC, respectively. <math display="inline"> <semantics> <msup> <mi>τ</mi> <mo>′</mo> </msup> </semantics> </math> is the difference between <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>g</mi> <mo>,</mo> <mi>s</mi> </mrow> <mo>′</mo> </msubsup> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>g</mi> <mo>,</mo> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> <mo>′</mo> </msubsup> </mrow> </semantics> </math> . <math display="inline"> <semantics> <mrow> <mrow> <mrow> <mn>2</mn> <msub> <mi>r</mi> <mrow> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>η</mi> <mi>c</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>/</mo> <mrow> <msub> <mi>c</mi> <mn>0</mn> </msub> </mrow> </mrow> </mrow> </semantics> </math> is the range offset induced by first azimuth scaling.</p> "> Figure 12
<p>T<sub>5</sub> is at swath center. T<sub>1</sub> is 75 km away from T<sub>5</sub> along the azimuth and range directions.</p> "> Figure 13
<p>(<b>a</b>) Azimuth and (<b>b</b>) range profiles corresponding to every point target, represented by blue and red lines, respectively.</p> ">
Abstract
:1. Introduction
2. Echo Model and Spatial Variance Analysis
2.1. Spatial Variance in the Time Domain
2.2. Spatial Variance in the Frequency Domain
3. Basic Methodology of Correcting Spatial Variance
4. Spatial Variance Correction and GEO SAR Imaging
4.1. First Azimuth Time Scaling
4.2. RCM Correction and Range Compression
4.3. Second Azimuth Time-Frequency Scaling
4.4. Azimuth Compression
4.5. Geometric Correction
5. Simulation and Verification
5.1. Simulation Parameters
5.2. Imaging Results
5.3. Computational Load
6. Conclusions
Author Contributions
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Parameters | Value |
---|---|
Orbital inclination angle | 60° |
Eccentricity | 0 |
Center time | 0 s |
Wavelength | 0.24 m |
Pulse width | 2 |
Bandwidth | 150 MHz |
Sampling rate | 250 MHz |
Pulse repetition frequency | 400 Hz |
Incidence angle | 35° |
Squint angle | 90° |
Synthetic aperture time | 630 s |
Target | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 |
---|---|---|---|---|---|---|---|---|---|
Azimuth resolution (m) | 1.95 | 1.93 | 1.95 | 1.96 | 1.95 | 1.96 | 1.98 | 1.98 | 1.97 |
Azimuth broadening | 0.99 | 1 | 0.99 | 0.98 | 1 | 0.99 | 0.98 | 1 | 1 |
Azimuth PSLR (dB) | 13.28 | −13.27 | −13.30 | −13.28 | −13.28 | −13.29 | −13.28 | −13.28 | −13.24 |
Azimuth ISLR (dB) | −10.18 | −10.21 | −10.26 | −10.17 | −10.17 | −10.24 | −10.18 | −10.17 | −10.19 |
Range resolution (m) | 2.09 | 2.09 | 2.08 | 2.07 | 2.07 | 2.06 | 2.08 | 2.06 | 2.06 |
Range broadening | 0.98 | 1 | 0.99 | 0.98 | 1 | 0.98 | 1 | 1 | 0.98 |
Range PSLR (dB) | −13.25 | −13.25 | −13.25 | −13.25 | −13.25 | −13.25 | −13.26 | −13.25 | −13.24 |
Range ISLR (dB) | −10.16 | −10.15 | −10.15 | −10.14 | −10.15 | −10.14 | −10.15 | −10.17 | −10.14 |
References
- Tomiyasu, K. Synthetic aperture radar in geosynchronous orbit. In Proceedings of the Antennas and Propagation Society International Symposium, Washington, DC, USA, 15–19 March 1978; pp. 42–45.
- Bruno, D.; Hobbs, S.E.; Ottavianelli, G. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications. Acta Astronaut. 2006, 59, 149–156. [Google Scholar] [CrossRef]
- Tomiyasu, K.; Pacelli, J.L. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans. Geosci. Remote Sens. 1983, 21, 324–329. [Google Scholar] [CrossRef]
- Hobbs, S.E.; Bruno, D. Radar imaging from GEO: Challenges and applications. In Proceedings of the Remote Sensing and Photogrammetry Society Annual Conference, Newcastle upon Tyne, UK, 12–14 September 2007.
- Global Eartquake Satellite System (GESS). Available online: http://solidearth.jpl.nasa.gov/gess.html (accessed on 6 September 2015).
- Guarnieri, A.M.; Tebaldini, S.; Rocca, F.; Broquetas, A. Gemini: Geosynchronous SAR for earth monitoring by interferometry and imaging. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 210–213.
- Schmidt, A.R. Secondary Range Compression for Improved Range Doppler Processing of SAR Data with Highsquint. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, 1986. [Google Scholar]
- Davison, G.W.; Cumming, I.G.; Ito, M.R. A Chirp Scaling Approach for processing squint mode SAR data. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 121–133. [Google Scholar] [CrossRef]
- Cafforio, C.; Prati, C.; Rocca, F. Full resolution focusing of SEASAT SAR images in the frequency-wave number domain. In Proceedings of the 8th EARSel Workshop, Capri, Italy, 17–20 May 1988; pp. 336–355.
- Zeng, T.; Li, Y.; Ding, Z.; Long, T.; Yao, D.; Sun, Y. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6718–6734. [Google Scholar] [CrossRef]
- Bao, M.; Xu, G.; Li, Y.C.; Xing, M.D.; Zheng, B.; Wang, W. Research on curve trajectory model and imaging algorithm for GEO SAR. J. Astronaut. 2011, 32, 1769–1777. [Google Scholar]
- Bao, M.; Xing, M.D.; Li, Y.C. Chirp scaling algorithm for GEOSAR based on fourth-order range equation. Electron. Lett. 2012, 48, 41–42. [Google Scholar] [CrossRef]
- Hu, B.; Jiang, Y.C.; Zhang, S.S.; Yeo, T.S. Focusing of geosynchronous SAR with nonlinear chirp scaling algorithm. Electron. Lett. 2015, 51, 1195–1197. [Google Scholar] [CrossRef]
- Sun, G.C.; Xing, M.D.; Wang, Y.; Yang, J.; Bao, Z. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband systhesis toprocess geosynchronous SAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4868–4880. [Google Scholar]
- Hu, B.; Jiang, Y.; Zhang, S.; Zhang, Y.; Yeo, T.S. Generalized Omega-K Algorithm for Geosynchronous SAR Image Formation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2286–2290. [Google Scholar] [CrossRef]
- Ding, Z.; Shu, B.; Yin, W.; Zeng, T.; Long, T. A Modified Frequency Domain Algorithm Based on Optimal Azimuth Quadratic Factor Compensation for Geosynchronous SAR Imaging. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1119–1131. [Google Scholar] [CrossRef]
- Li, D.; Wu, M.; Sun, Z.; He, F.; Dong, Z. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 3999–4009. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Pei, L.; Gao, L.N.; Dong, X.C.; Long, T. High accurate compensation method of Doppler center frequency in GEO SAR using phase scan. Trans. Beijing Inst. Technol. 2010, 30, 741–745. [Google Scholar]
- Tom, M.A. Mathematical Analysis, 2nd ed.; China Machine Press: Beijing, China, 2004. [Google Scholar]
- Neo, Y.L.; Wong, F.H.; Cumming, I.G. A two-dimentional spectrum for bistatic SAR processing using series reversion. IEEE Geosci. Remote Sens. Lett. 2007, 4, 93–96. [Google Scholar] [CrossRef]
- Curlander, J.; McDonough, R. Synthetic Aperture Radar: Systems and Signal Processing; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Li, Z.; Li, C.S.; Yu, Z.; Zhou, J.; Chen, J. Back projection algorithm for high resolution GEO-SAR imaging formation. In Proceedings of the 2011 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 336–339.
- Wong, F.H.; Yeo, T.S. New applications of nonlinear chirp scaling in SAR data processing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 946–953. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Orbital inclination angle | 60° |
Eccentricity | 0 |
Wavelength | 0.24 m |
Incidence angle | 35° |
Ground resolution | 2 m |
Parameters | Value |
---|---|
Orbital inclination angle | 60° |
Eccentricity | 0 |
Center time | 8600 s |
Wavelength | 0.24 m |
Pulse width | 2 μs |
Bandwidth | 150 MHz |
Sampling rate | 250 MHz |
Pulse repetition frequency | 120 Hz |
Incidence angle | 35° |
Squint angle | 90° |
Synthetic aperture time | 750 s |
Target | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 |
---|---|---|---|---|---|---|---|---|---|
Azimuth resolution (m) | 1.87 | 1.86 | 1.88 | 1.91 | 1.91 | 1.91 | 1.96 | 1.96 | 1.97 |
Azimuth broadening | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Azimuth PSLR (dB) | −13.29 | −13.30 | −13.23 | −13.36 | −13.36 | −13.36 | −13.22 | −13.19 | −13.24 |
Azimuth ISLR (dB) | −10.37 | −10.51 | −10.32 | −10.60 | −10.55 | −10.55 | −10.59 | −10.54 | −10.51 |
Range resolution (m) | 1.95 | 1.95 | 1.94 | 1.94 | 1.94 | 1.94 | 1.94 | 1.94 | 1.94 |
Range broadening | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Range PSLR (dB) | −13.46 | −13.29 | −13.24 | −13.25 | −13.26 | −13.26 | −13.26 | −13.28 | −13.40 |
Range ISLR (dB) | −9.98 | −9.72 | −9.76 | −9.73 | −9.69 | −9.69 | −9.74 | −9.71 | −9.84 |
Proposed Algorithm | Algorithm in [15] | Algorithm in [17] | |
---|---|---|---|
Azimuth resolution (m) | 1.91 | 1.89 | 1.91 |
Azimuth broadening | 1.00 | 1.00 | 1.00 |
Azimuth PSLR (dB) | −13.36 | −13.37 | −13.02 |
Azimuth ISLR (dB) | −10.55 | −10.61 | −10.25 |
Range resolution (m) | 1.94 | 1.94 | 1.94 |
Range broadening | 1.00 | 1.00 | 1.00 |
Range PSLR (dB) | −13.26 | −13.25 | −13.42 |
Range ISLR (dB) | −9.69 | −9.68 | −9.78 |
Proposed Algorithm | Algorithm in [15] | Algorithm in [17] | |
---|---|---|---|
Azimuth resolution (m) | 1.88 | 3.71 | 15.48 |
Azimuth broadening | 1.00 | 1.86 | 7.77 |
Azimuth PSLR (dB) | −13.23 | −0.16 | −9.63 |
Azimuth ISLR (dB) | −10.32 | 0.09 | −7.42 |
Range resolution (m) | 1.94 | 1.94 | 2.38 |
Range broadening | 1.00 | 1.00 | 1.204 |
Range PSLR (dB) | −13.24 | −13.578 | −5.158 |
Range ISLR (dB) | −9.76 | −9.77 | −1.906 |
Target | Proposed Algorithm | BPA | CSA |
---|---|---|---|
Computational load (GFLOP) | 6790.6512 | 6,865,799.04 | 2415.32 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Lin, P.; Xiao, P.; Kang, L.; Li, C. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling. Sensors 2016, 16, 1091. https://doi.org/10.3390/s16071091
Yu Z, Lin P, Xiao P, Kang L, Li C. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling. Sensors. 2016; 16(7):1091. https://doi.org/10.3390/s16071091
Chicago/Turabian StyleYu, Ze, Peng Lin, Peng Xiao, Lihong Kang, and Chunsheng Li. 2016. "Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling" Sensors 16, no. 7: 1091. https://doi.org/10.3390/s16071091
APA StyleYu, Z., Lin, P., Xiao, P., Kang, L., & Li, C. (2016). Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling. Sensors, 16(7), 1091. https://doi.org/10.3390/s16071091