Distance-Based Opportunistic Mobile Data Offloading
<p>The structure of DOPS.</p> "> Figure 2
<p>Illustrate of <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">d</mi> <mrow> <mtext>ps</mtext> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>{</mo> <msub> <mi>d</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mtext> </mtext> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>{</mo> <msub> <mi>d</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo> </mo> <msub> <mi>d</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mtext> </mtext> <mi>M</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>{</mo> <msub> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">t</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo> </mo> <msub> <mi>d</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> <mtext> </mtext> <mo> </mo> <msub> <mi>d</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>.</p> "> Figure 3
<p>An example of subscribing content and opportunistic publishing content in DOPS.</p> "> Figure 4
<p>When a relay receives its subscribed content, the relay removes itself from the subscription table.</p> "> Figure 5
<p>Contact time distribution.</p> "> Figure 6
<p>Traffic offloading ratios under different subscriber ratios.</p> "> Figure 7
<p>Offloading efficiency with the time before deadline.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Distance-Based Opportunistic Push/Subscribe Content Dissemination Model
3.1. Hybrid Wireless Communication
3.2. Introduction of DOPS
3.3. Application Layer
3.3.1. Subscribing Content
3.3.2. Subscription Management
3.4. Decision-Making Layer
3.4.1. Principle of Publishing Content
3.4.2. Publishing Content
3.5. Network Layer
3.6. Traffic Offloading by Multi-Receiver
4. Performance Evaluation
4.1. Simulation Setup
4.2. Contact Time
4.3. Result: Traffic Offloading Efficiency
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018. Available online: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html (accessed on 9 June 2016).
- Laoutaris, N.; Smaragdakis, G.; Rodriguez, P.; Sundaram, R. Delay-tolerant bulk data transfer on the Internet. ACM Sigmetrics Perform. Eval. Rev. 2009, 21, 229–238. [Google Scholar]
- Dimatteo, S.; Hui, P.; Han, B.; Li, V.O. Cellular traffic offloading through WiFi networks. In Proceedings of the Mobile Adhoc and Sensor Systems (MASS), Valencia, Spain, 17–22 October 2011.
- Lee, K.; Lee, J.; Yi, Y.; Rhee, I.; Chong, S. Mobile data offloading: How much can WiFi deliver? IEEE ACM Trans. Netw. 2013, 21, 536–550. [Google Scholar] [CrossRef]
- Pesavento, D.; Grassi, G.; Pau, G. Demo: Car-Fi: Opportunistic V2I by exploiting dual-access Wi-Fi networks. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015; pp. 173–175.
- Kim, Y.; Lee, K.; Shroff, N.B. An analytical framework to characterize the efficiency and delay in a mobile data offloading system. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing, Philadelphia, PA, USA, 18–21 August 2014.
- Han, B.; Hui, P.; Kumar, V.S.; Marathe, M.V.; Pei, G.; Srinivasan, A. Cellular traffic offloading through opportunistic communications: A case study. In Proceedings of the ACM Workshop on Challenged Networks, Chicago, IL, USA, 20–24 September 2010.
- Huang, Y.; Garcia-Molina, H. Publish/subscribe in a mobile environment. Wirel. Netw. 2001, 10, 27–34. [Google Scholar] [CrossRef]
- Whitbeck, J.; Lopez, Y.; Leguay, J.; Conan, V.; de Amorim, M.D. Push-and-track: Saving infrastructure bandwidth through opportunistic forwarding. Pervasive Mob. Comput. 2012, 8, 682–697. [Google Scholar] [CrossRef]
- Valerio, L.; Ben Abdesslemy, F.; Lindgreny, A.; Bruno, R.; Passarella, A.; Luoto, M. Offloading cellular traffic with opportunistic networks: A feasibility study. In Proceedings of the Ad Hoc Networking Workshop, Vilamoura, Portugal, 17–18 June 2015.
- Li, Y.; Qian, M.; Jin, D.; Hui, P.; Wang, Z.; Chen, S. Multiple mobile data offloading through disruption tolerant networks. IEEE Trans. Mob. Comput. 2014, 13, 1579–1596. [Google Scholar]
- Mehmeti, F.; Spyropoulos, T. Is it worth to be patient? Analysis and optimization of delayed mobile data offloading. In Proceedings of the INFOCOM IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014.
- Kouyoumdjieva, S.; Karlsson, G. Energy-aware opportunistic mobile data offloading for users in urban environments. In Proceedings of the IFIP Networking Conference, Toulouse, France, 20–22 May 2015.
- Gao, L.; Iosifidis, G.; Huang, J.; Tassiulas, L.; Li, D. Bargaining-based mobile data offloading. IEEE J. Sel. Areas Commun. 2014, 32, 1114–1125. [Google Scholar] [CrossRef]
- Paris, S.; Martignon, F.; Filippini, I.; Chen, L. An efficient auction-based mechanism for mobile data offloading. IEEE Trans. Mob. Comput. 2015, 14, 1573–1586. [Google Scholar] [CrossRef]
- Camps-Mur, D.; Garcia-Saavedra, A.; Serrano, P. Device-to-device communications with Wi-Fi Direct: overview and experimentation. IEEE Wirel. Commun. 2013, 20, 96–104. [Google Scholar] [CrossRef]
- Burgess, J.; Gallagher, B.; Jensen, D.; Levine, B.N. MaxProp: Routing for vehicle-based disruption-tolerant networks. In Proceedings of the IEEE International Conference on Computer Communications INFOCOM, Barcelona, Spain, 23–29 April 2006.
- Lu, X.; Lio, P.; Hui, P.; Qu, Z. Nodes density adaptive opportunistic forwarding protocol for intermittently connected networks. In Proceedings of the International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), Beijing, China, 17–18 October 2014.
- Xiao, M.; Wu, J.; Huang, L. Community-aware opportunistic routing in mobile social networks. IEEE Trans. Comput. 2014, 63, 1682–1695. [Google Scholar] [CrossRef]
- Yao, H.; Huang, H.; Zeng, D.; Li, B.; Guo, S. An energy-aware deadline-constrained message delivery in delay-tolerant networks. Wirel. Netw. 2014, 20, 1981–1993. [Google Scholar] [CrossRef]
- Greifenberg, J.; Kutscher, D. Efficient publish/subscribe-based multicast for opportunistic networking with self-organized resource utilization. In Proceedings of the International Conference on Advanced Information Networking and Applications, Okinawa, Japan, 25–28 March 2008.
- Gao, W.; Li, Q.; Zhao, B.; Cao, G. Multicasting in delay tolerant networks: A social network perspective. In Proceedings of the Tenth ACM International Symposium on Mobile Ad Hoc Networking and Computing, New Orleans, LA, USA, 18–24 May 2009.
- Wang, Y.; Chuah, M.C.; Chen, Y. Incentive based data sharing in delay tolerant mobile networks. IEEE Trans. Wirel. Commun. 2014, 13, 370–381. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Sun, Y.; Bie, R. Square-root unscented Kalman filtering-based localization and tracking in the Internet of Things. Pers. Ubiquitous Comput. 2012, 18, 1824–1829. [Google Scholar]
- Sun, Y.; Yu, X.; Bie, R.; Song, H. Discovering Time-dependent Shortest Path on Traffic Graph for Drivers towards Green Driving. J. Netw. Comput. Appl. 2016, in press. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of nodes | 180 |
TTL | 60 min |
Wi-Fi transmission range | 100 m |
Size of the content | 2 M~5 M |
Simulation time | 1 day |
Transmission speed | 10 Mbps |
Simulation area | 15.3 km2 |
Nodes travel speed | 7 to 10 m/s |
Node‘s buffer | 100 M |
Opportunistic routing | Maxprop |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Lio, P.; Hui, P. Distance-Based Opportunistic Mobile Data Offloading. Sensors 2016, 16, 878. https://doi.org/10.3390/s16060878
Lu X, Lio P, Hui P. Distance-Based Opportunistic Mobile Data Offloading. Sensors. 2016; 16(6):878. https://doi.org/10.3390/s16060878
Chicago/Turabian StyleLu, Xiaofeng, Pietro Lio, and Pan Hui. 2016. "Distance-Based Opportunistic Mobile Data Offloading" Sensors 16, no. 6: 878. https://doi.org/10.3390/s16060878
APA StyleLu, X., Lio, P., & Hui, P. (2016). Distance-Based Opportunistic Mobile Data Offloading. Sensors, 16(6), 878. https://doi.org/10.3390/s16060878