A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment
<p>The PDFs of the <span class="html-italic">t</span>-distribution for 0.05, 0.5, 1, 4, 10, 100 and 200 degrees of freedom and the PDF of the standard Gaussian distribution (cyan) related to the measurement noise <math display="inline"> <semantics> <mrow> <msub> <mi>γ</mi> <mi>k</mi> </msub> </mrow> </semantics> </math>.</p> "> Figure 2
<p>The architecture of the proposed method.</p> "> Figure 3
<p>Test site and path (original photo from Google Map).</p> "> Figure 4
<p>Estimate results of nGDPS and GDPS <span class="html-italic">versus</span> true vehicle state in (X, Y)-coordinates: (<b>a</b>,<b>b</b>) Position; (<b>c</b>,<b>d</b>) Velocity; and (<b>e</b>,<b>f</b>) Acceleration.</p> "> Figure 5
<p>Vehicle state estimate (VSE) errors plot depicting the performance of GDPS, nGDPS-VSE through the influence of the non-Gaussianity related to the measurement noise. Position estimate: (<b>a</b>) East and (<b>b</b>) North. Velocity estimate: (<b>c</b>) East and (<b>d</b>) North. Acceleration estimate: (<b>e</b>) East and (<b>f</b>) North.</p> "> Figure 6
<p>Estimate position results of nGDPS, GSPF and RBPS <span class="html-italic">versus</span> true vehicle state in (X, Y)-coordinates. (<b>a</b>) X-coordinates; (<b>b</b>) Y-coordinates.</p> "> Figure 7
<p>Estimate velocity results of nGDPS, GSPF and RBPS <span class="html-italic">versus</span> true vehicle state in (X, Y)-coordinates. (<b>a</b>) X-coordinates; (<b>b</b>) Y-coordinates.</p> "> Figure 8
<p>Estimate acceleration results of nGDPS, GSPF and RBPS <span class="html-italic">versus</span> true vehicle state in (X, Y)-coordinates. (<b>a</b>) X-coordinates; (<b>b</b>) Y-coordinates.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. Non-Gaussian Delayed Particle Smoothing Method and Computation of the Proposal Distribution Parameters
3.1. Non-Gaussian Delayed Particle Smoothing Method (nGDPS)
3.2. Computation of the Proposal Distribution Parameters for nGDPS
3.2.1. EnKF Approach for Computing the Mean and Covariance of the Proposal Distribution
3.2.2. Delayed Gibbs Sampling Method for Degeneracy Problem of nGDPS
4. nGDPS Algorithm for Vehicle Localization
Algorithm 1 Non-Gaussian Delayed Particle Smoother (nGDPS) for Vehicle Localization |
% Initialization: |
At time : |
Set , the state vector representing the initial information of vehicle where , , and are position, velocity, and acceleration respectively; |
Select initial covariance matrices and related to the measurement and process noises respectively; |
Draw M particles and set the weight , given that the prior knowledge ; |
Set the fixed-delay size L and sample time K. |
For each time instant do |
For each particle do
|
End For |
End For |
5. Experimental Results and Analysis
5.1. Simulation Setup
5.2. Comparison and Analysis Results
6. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gu, Y.; Hsu, L.T.; Kamijo, S. Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment. Sensors 2015, 15, 30199–30220. [Google Scholar] [CrossRef] [PubMed]
- Byun, Y.S.; Jeong, R.G.; Kang, S.W. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays. Sensors 2015, 15, 28807–28825. [Google Scholar] [CrossRef] [PubMed]
- Almazán, J.; Bergasa, L.M.; Yebes, J.J.; Barea, R.; Arroyo, R. Full auto-calibration of a smartphone on board a vehicle using IMU and GPS embedded sensors. In Proceedings of the IEEE International Conference on Intelligent Vehicles Symposium (IV), Gold Coast, Australia, 23–26 June 2013; pp. 1374–1381.
- Chen, X. Strong Law of Large Numbers under an Upper Probability. Appl. Math. 2012, 3, 2056–2062. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, L.; Gan, M. Extension of SGMF Using Gaussian Sum Approximation for Nonlinear/Non-Gaussian Model and its Application in Multipath Estimation. Acta Autom. Sin. 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Mohseni, H.R.; Kringelbach, M.L.; Woolrich, M.W.; Baker, A.; Aziz, T.Z.; Probert-Smith, P. Non-Gaussian probabilistic MEG source localisation based on kernel density estimation. NeuroImage 2014, 87, 444–464. [Google Scholar] [CrossRef] [PubMed]
- Fahim, K.A.; Shahzad, Y.M.; Bashir, B.K. Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise. Comput. Math. Methods Med. 2015, 2015, 389875. [Google Scholar]
- Angrisano, A.; Petovello, M.; Pugliano, G. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation. Sensors 2012, 12, 5134–5158. [Google Scholar] [CrossRef] [PubMed]
- Havyarimana, V.; Wang, D.; Xiao, Z. A Novel Probabilistic Approach for Vehicle Position Prediction in Free, Partial, and Full GPS Outages. Math. Probl. Eng. 2015, 2015, 189282. [Google Scholar] [CrossRef]
- Havyarimana, V.; Wang, D.; Xiao, Z. A Two-Task Hierarchical Constrained Tri-objective Optimization approach for Vehicle State Estimation under non-Gaussian Environment. J. Comput. Theor. Nanosci. 2015, 12, 5504–5516. [Google Scholar]
- Havyarimana, V.; Wang, D.; Xiao, Z. A Hybrid Approach-based Sparse Gaussian Kernel Model for Vehicle State Determination during the Free and Complete GPS Outages. ETRI J. 2016. [Google Scholar] [CrossRef]
- Kotecha, J.H.; Djuri, P.M. Gaussian particle filtering. IEEE Trans. Signal Process. 2003, 51, 2592–2601. [Google Scholar] [CrossRef]
- Kotecha, J.H.; Djuri, P.M. Gaussian sum particle filtering for dynamic state space models. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, UT, USA, 7–11 May 2001; pp. 3465–3468.
- Kotecha, J.H.; Djuri, P.M. Gaussian sum particle filtering. IEEE Trans. Signal Process. 2003, 51, 2602–2612. [Google Scholar] [CrossRef]
- Mihaylova, L.; Hegyi, A.; Gning, A.; Boel, R. Parallelized Particle and Gaussian Sum Particle Filters for Large Scale Traffic Systems. IEEE Trans. Intell. Transp. Syst. 2012, 13, 36–48. [Google Scholar] [CrossRef]
- Mihaylova, L.; Boel, R.; Hegyi, A. Freeway Traffic Estimation within Recursive Bayesian Framework. Automatica 2007, 43, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.; Ait-El-Fquih, B.; Desbouvries, F. A Fixed-lag Particle Smoother for Blind SISO Equalization of Time-Varying Channels. IEEE Trans. Wirel. Commun. 2012, 9, 512–517. [Google Scholar] [CrossRef]
- Sarkka, S. Bayesian Filtering and Smoothing; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Han, S.; Hyun, K.W. A Note on Two-Filter Smoothing Formulas. IEEE Trans. Autom. Control 2008, 53, 849–855. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Y.; Niu, X.; Wang, L.; Chen, L.; Liu, J.; Shi, C.; Hyyppä, J. LiDAR scan matching aided inertial navigation system in GNSS-denied environments. Sensors 2015, 7, 16710–16728. [Google Scholar] [CrossRef] [PubMed]
- Lindsten, F.; Bunch, P.; Godsill, S.J.; Schon, T.B. Rao-Blackwellized particle smoothers for mixed linear/nonlinear state-space models. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 28–31 May 2013; pp. 6288–6292.
- Papi, F. Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking. IEEE Trans. Signal Proc. 2014, 62, 3143–3153. [Google Scholar]
- Challa, R.; Morelande, M.R.; Mušicki, D.; Robin, J.; Evans, R.J. Fundamentals of Object Tracking; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Mandel, J.; Cobb, L.; Beezley, J.D. On the convergence of the ensemble Kalman filter. Appl. Math. 2011, 56, 533–541. [Google Scholar] [CrossRef]
- Papadakis, N. Data Assimilation with the Weighted Ensemble Kalman Filter; International Meteorological Institute: Stockholm, Sweden, 2010; pp. 673–697. [Google Scholar]
- Prakasha, J.; Patwardhanb, C.S.; Shahc, S.L. On the choice of importance distributions for unconstrained and constrained state estimation using particle filter. J. Process Control 2011, 21, 3–16. [Google Scholar] [CrossRef]
- Roth, M. On the Multivariate t-Distribution; Technical Report from Automatic Control; Linköpings Universitet: Linköpings, Sweden, 2013; pp. 1–21. [Google Scholar]
- Agamennoni, G.; Eduardo, M.N. Robust Estimation in Non-Linear State-Space Models with State-Dependent Noise. IEEE Trans. Signal Process. 2014, 62, 2165–2175. [Google Scholar] [CrossRef]
- Li, W.; Jia, Y. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise. Signal Process. 2012, 92, 2464–2470. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, G.; Naqvi, S.M.R.; Chambers, J.A. Independent vector analysis with multivariate student’s t-distribution source prior for speech separation. Electron. Lett. 2013, 49, 1–2. [Google Scholar] [CrossRef]
- Cosme, E.; Verron, J.; Brasseur, P.; Blum, J.; Auroux, D. Smoothing Problems in a Bayesian Framework and Their Linear Gaussian Solutions. Mon. Weather Rev. 2012, 140, 683–695. [Google Scholar] [CrossRef]
- Cheng, W.C. PSO algorithm particle filters for improving the performance of lane detection and tracking systems in difficult roads. Sensors 2012, 12, 17168–17185. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Langlois, J.M.P.; Savaria, Y. Efficient Uniform Quantization Likelihood Evaluation for Particle Filters in Embedded Implementations. J. Signal Process. Syst. 2014, 75, 191–202. [Google Scholar] [CrossRef]
- Berntorp, K.; Arzen, K.E.; Robertsson, A. Storage efficient particle filters with multiple out-of-sequence measurements. In Proceedings of the IEEE 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 471–478.
- Arulampalam, S.M.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef]
- Wang, Y.; Chaib-draa, B. An adaptive nonparametric particle filter for state estimation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 4355–4360.
- Cappe, O.; Moulines, E.; Ryden, T. Inference in Hidden Markov Models; Springer: New York, NY, USA, 2005. [Google Scholar]
- Razali, S.; Watanabe, K.; Maeyama, S.; Izumi, K. An Unscented Rauch-Tung-Striebel Smoother for a Vehicle Localization Problem. In Proceedings of SCIS ISIS 2010, Okayama, Japan, 8–12 December 2010; pp. 1261–1265.
- Zuo, J. Dynamic resampling for alleviating sample impoverishment of particle filter. IET Radar Sonar Navig. 2013, 7, 968–977. [Google Scholar] [CrossRef]
- Van Lint, J.W.C. Online learning solutions for freeway travel time prediction. IEEE Trans. Intell. Transp. Syst. 2008, 9, 38–47. [Google Scholar] [CrossRef]
- Zeng, X.; Shi, Y.; Lian, Y. Research on Resampling Algorithms for Particle Filter. In Proceedings of the 2nd International Conference on Teaching and Computational Science, Shenzhen, China, 29–30 July 2014; pp. 23–28.
- Laroque, C.; Himmelspach, J.; Pasupathy, R.; Rose, O.; Uhrmacher, A.M. On the choice of mcmc kernels for approximate bayesian computation with SMC samplers. In Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany, 9–12 December 2012; pp. 34–46.
- Venugopal, D.; Gogate, V. On Lifting the Gibbs Sampling Algorithm. Adv. Neural Inf. Process. Syst. 2012, 25, 1664–1672. [Google Scholar]
- Beevers, K. Sampling Strategies for Particle Filtering SLAM; Technical Report 06-11; Department of Computer Science, Rensselaer Polytechnic Institute: Troy, NY, USA, 2006. [Google Scholar]
- Philip, R.; Hardisty, E. Gibbs Sampling for the Uninitiated; Institute for Advanced Computer Studies, Maryland University: College Park, MD, USA, 2010. [Google Scholar]
- Zhang, J.; Luo, W.; Jin, R. ZA Particle Filter for Frequency Synchronization in MIMO-OFDM Systems. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24–26 September 2009; pp. 1–4.
- Hsu, L.T.; Gu, Y.; Kamijo, S. NLOS correction/exclusion for GNSS measurement using RAIM and city building models. Sensors 2015, 15, 17329–17349. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Li, J.; Wu, C.; Liu, J.-H. A Timing Estimation Method Based-on Skewness Analysis in Vehicular Wireless Networks. Sensors 2015, 15, 28942–28959. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-H.; Song, J.-H.; Im, J.-H.; Im, S.-H.; Heo, M.-B.; Jee, G.-I. GPS/DR Error Estimation for Autonomous Vehicle Localization. Sensors 2015, 15, 20779–20798. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Walker, S.G. Objective Prior for the Number of Degrees of Freedom of a t-Distribution. Bayesian Anal. 2014, 9, 197–220. [Google Scholar] [CrossRef]
- David, S.S.; Kent, D.W. Resampling in State Space Models; Cambridge University Press: Cambridge, UK, 2004; pp. 171–202. [Google Scholar]
Sensors | Type | Range |
---|---|---|
GPS | BCM 4752 | Doppler: 0.03 m/s, Pseudo range: 0.50 m, Carrier phase: 0.05 m |
Gyroscope | MPU 6500 | ±250/500/1000 deg/s |
Accelerometer | MPU 6500 | ±2 g/4 g/8 g |
WSS | - | 0.05 m/s |
Methods | Pos (X) | Pos (Y) | Velocity (X) | Velocity (Y) | Acc (X) | Acc (Y) |
---|---|---|---|---|---|---|
PF | 1.0586 | 1.1544 | 31.8801 | 22.8954 | 28.1493 | 41.9005 |
GSPF | 0.2732 | 0.2800 | 28.0227 | 22.5702 | 27.5700 | 35.9537 |
RBPS | 0.1844 | 0.1501 | 12.2739 | 20.0224 | 18.2701 | 27.3539 |
FIPS | 0.1182 | 0.1320 | 10.3371 | 14.7937 | 12.9007 | 19.5511 |
FPPS | 0.0908 | 0.0774 | 7.7410 | 12.8522 | 5.9010 | 13.8574 |
GDPS | 0.0556 | 0.0473 | 1.3790 | 9.8386 | 3.3093 | 9.0792 |
nGDPS | 0.0508 | 0.0715 | 3.3791 | 7.1948 | 3.3795 | 7.1344 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Havyarimana, V.; Li, T.; Wang, D. A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment. Sensors 2016, 16, 692. https://doi.org/10.3390/s16050692
Xiao Z, Havyarimana V, Li T, Wang D. A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment. Sensors. 2016; 16(5):692. https://doi.org/10.3390/s16050692
Chicago/Turabian StyleXiao, Zhu, Vincent Havyarimana, Tong Li, and Dong Wang. 2016. "A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment" Sensors 16, no. 5: 692. https://doi.org/10.3390/s16050692
APA StyleXiao, Z., Havyarimana, V., Li, T., & Wang, D. (2016). A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment. Sensors, 16(5), 692. https://doi.org/10.3390/s16050692