Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics
<p>(<b>a</b>) An optical microscope image (top view) of the a-Si:H-based MZI modulators and temperature sensors; (<b>b</b>) temperature sensor detail; (<b>c</b>) schematic MZI and temperature sensor (plot not in scale); and (<b>d</b>) cross section of the integrated a-Si:H p-i-n diode temperature sensor.</p> "> Figure 2
<p>(<b>a</b>) Forward current-voltage characteristics for temperatures ranging from 30 °C up to 170 °C, with Δ<span class="html-italic">T</span> = 20 °C steps. The inset shows a detail of the <span class="html-italic">I<sub>D</sub>-V<sub>D</sub></span> characteristics in linear scale. (<b>b</b>) Measured (points) forward voltages <span class="html-italic">versus</span> temperature at different bias currents (<span class="html-italic">I<sub>D</sub></span> = 3.7, 22.8, 37.3, 60.4, 80 nA). Experimental data are fitted with the best-calculated linear model <span class="html-italic">f<sub>L</sub>(T)</span>.</p> "> Figure 3
<p>(<b>a</b>) Sensitivity, <span class="html-italic">S</span>; (<b>b</b>) coefficient of determination, <span class="html-italic">R<sup>2</sup></span>; and (<b>c</b>) root mean square error, <span class="html-italic">rmse,</span> for the whole temperature range of 30–170 °C for bias currents between <span class="html-italic">I<sub>D</sub></span> = 3.7–80 nA.</p> "> Figure 4
<p>Linear fit and <span class="html-italic">rmse</span> of <span class="html-italic">V<sub>D</sub> vs. T</span> for five different diodes fabricated with the same technological process and measured in a long period of time. The measurement cycles, from (up to) 30 °C up to (from) 170 °C, were done in different days. The bias current is <span class="html-italic">I<sub>D</sub></span> = 37.3 nA for all five sensors. The inset shows the distribution of <span class="html-italic">V<sub>D</sub></span> for the five different diodes at <span class="html-italic">T</span> = 80 °C.</p> "> Figure 5
<p>Power dissipation <span class="html-italic">vs.</span> temperature characteristics for <span class="html-italic">I<sub>D</sub></span> = 37.3 nA.</p> ">
Abstract
:1. Introduction
2. Device Structure
3. Experimental Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thomson, D.J.; Gardes, F.Y.; Fédéli, J.-M.; Zlatanovic, S.; Hu, Y.; Kuo, B.P.P.; Myslivets, E.; Alic, N.; Radic, S.; Mashanovich, G.Z.; et al. 50-Gb/s Silicon Optical Modulator. IEEE Photonics Technol. Lett. 2012, 24, 234–236. [Google Scholar] [CrossRef]
- Lee, Y.H.D.; Thompson, M.O.; Lipson, M. Deposited low temperature silicon GHz modulator. Opt. Express. 2013, 21, 26688–26692. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Chen, H.; Yang, L.; Zhang, L.; Ji, R.; Tian, Y.; Zhu, W.; Lu, Y.; Zhou, P.; Min, R. Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration. Opt. Express 2012, 20, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Baehr-Jones, T.; Pinguet, T.; Li, J.; Harris, N.C.; Streshinsky, M.; He, L.; Novack, A.; Lim, E.; Liow, T.; et al. A silicon platform for high-speed photonics systems. In Proceedings of the Optical Fiber Communication Conference, OSA Technical Digest, Los Angeles, CA, USA, 4–8 March 2012. [CrossRef]
- Lim, P.H.; Cai, J.; Ishikawa, Y.; Wada, K. Laterally coupled silicon-germanium modulator for passive waveguide systems. Opt. Lett. 2012, 37, 1496–1498. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Della Corte, F.G.; Summonte, C. Amorphous silicon waveguides grown by PECVD on an Indium Tin Oxide buried contact. Opt. Commun. 2012, 285, 3088–3092. [Google Scholar] [CrossRef]
- Casalino, M.; Iodice, M.; Sirleto, L.; Rao, S.; Rendina, I.; Coppola, G. Low dark current silicon-on-insulator waveguide metal-semiconductor-metal photodetector based on internal photoemissions at 1550 nm. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Takei, R.; Manako, S.; Omoda, E.; Mori, M.; Sakakibara, Y.; Kamei, T. Highly transpearent submicrometer-sclae amorphous silicon waveguide for backend optical interconnect. In Proceedings of the IEEE Optical Interconnects Conference, San Diego, CA, USA, 4–7 May 2014; pp. 135–136.
- Lipka, T.; Wahn, L.; Trieu, H.K.; Hilterhaus, L.; Muller, J. Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators. J. Nanophotonics 2013, 7. [Google Scholar] [CrossRef]
- Della Corte, F.G.; Rao, S. Use of amorphous silicon for active photonic devices. IEEE Trans. Electron Devices 2013, 60, 1495–1505. [Google Scholar] [CrossRef]
- Cocorullo, G.; Della Corte, F.G.; Rendina, I. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 1999, 74, 3338–3340. [Google Scholar] [CrossRef]
- Della Corte, F.G.; Montefusco, M.E.; Moretti, L.; Rendina, I.; Cocorullo, G. Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J. Appl. Phys. 2000, 88, 7115–7119. [Google Scholar] [CrossRef]
- Cocorullo, G.; Della Corte, F.G.; Rendina, I.; Rubino, A.; Terzini, E. Thermo-optical modulation at λ = 1.5 µm in an a-SiC/a-Si/a-SiC planar guided-wave structure. IEEE Photonics Technol. Lett. 1996, 8, 900–902. [Google Scholar] [CrossRef]
- Padmaraju, K.; Bergman, K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 2013, 13, 1–14. [Google Scholar] [CrossRef]
- Selvaraja, S.K.; Bogaerts, W.; Van Thourhout, D.; Schaekers, M. Thermal trimming and tuning of hydrogenated amorphous silicon nanophotonic devices. Appl. Phys. Lett. 2010, 97, 071120-1–071120-3. [Google Scholar] [CrossRef]
- La Notte, M.; Troia, B.; Muciaccia, T.; Campanella, C.E.; de Leonardis, F.; Passaro, V.M.N. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors. Sensors 2014, 14, 4831–4855. [Google Scholar] [CrossRef] [PubMed]
- Lipka, T.; Moldenhauer, L.; Müller, J.; Trieu, H.K. Athermal and wavelength-trimmable photonic filters based on TiO2-cladded amorphous-SOI. Opt. Express 2015, 23, 20075–20088. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, M.; Haneef, I.; Akhtar, S.; de Luca, A.; Udrea, F. Silicon diode temperature sensors—A review of applications. Sens. Actuators A Phys. 2015, 232, 63–74. [Google Scholar] [CrossRef]
- Zhang, N.; Lin, C.-M.; Senesky, D.G.; Pisano, A.P. Temperature sensor based on 4H-silicon carbide pn diode operational from 20 °C to 600 °C. Appl. Phys. Lett. 2014, 104. [Google Scholar] [CrossRef]
- Udrea, F.; Santra, S.; Gardner, J.W. CMOS temperature sensors—Concepts, state-of-the-art and prospects. In Proceedings of the CAS 2008 International Semiconductor Conference, Sinaia, Romania, 13–15 October 2008; pp. 31–40.
- De Cesare, G.; Nascetti, A.; Caputo, D. Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor. Sensors 2015, 15, 12260–12272. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Coppola, G.; Gioffrè, M.A.; Della Corte, F.G. A 2.5 ns switching time Mach-Zehnder modulator in as-deposited a-Si:H. Opt. Express 2012, 20, 9351–9356. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, F.G.; Rao, S.; Coppola, G.; Summonte, C. Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device. Opt. Express 2011, 19, 2941–2951. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Guha, P.K.; Ali, S.Z.; Haneef, I.; Udrea, F. Silicon on insulator diode temperature sensor—A detailed analysis for ultra-high temperature operation. IEEE Sens. J. 2010, 10, 997–1003. [Google Scholar] [CrossRef]
- Rao, S.; Della Corte, F.G.; Pangallo, G. 4H-SiC p-i-n diode as Highly Linear Temperature Sensor. IEEE Trans. Electron Devices 2015, 63, 414–418. [Google Scholar] [CrossRef]
- Nagelkerke, N.J.D. A Note on a General Definition of the Coefficient of Determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Meijer, G.C.M.; Verhoeff, J.B. An integrated bandgap reference. IEEE J. Solid-State Circuits 1976, 11, 403–406. [Google Scholar] [CrossRef]
- Banerjee, A.; Park, Y.; Clarke, F.; Song, H.; Yang, S.; Kramer, G.; Kim, K.; Mukherjee, B. Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review. J. Opt. Netw. 2005, 4, 737–758. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, S.; Pangallo, G.; Della Corte, F.G. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics. Sensors 2016, 16, 67. https://doi.org/10.3390/s16010067
Rao S, Pangallo G, Della Corte FG. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics. Sensors. 2016; 16(1):67. https://doi.org/10.3390/s16010067
Chicago/Turabian StyleRao, Sandro, Giovanni Pangallo, and Francesco Giuseppe Della Corte. 2016. "Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics" Sensors 16, no. 1: 67. https://doi.org/10.3390/s16010067