A New Analytic Alignment Method for a SINS
<p>The gravity and rotational velocity vectors in the navigation frame.</p> "> Figure 2
<p>Existence of the selective alignment solution: (<b>a</b>) Two lines that represent the <math display="inline"> <semantics> <mrow> <msub> <mi>y</mi> <mi>b</mi> </msub> </mrow> </semantics> </math>-axis will be formed by the intersections of the two conical surfaces; (<b>b</b>) Two lines that represent the <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mi>b</mi> </msub> </mrow> </semantics> </math>-axis will be formed by the intersection of a plane and a conical surface.</p> "> Figure 3
<p>(<b>a</b>) The definitions of <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <mi>O</mi> <mi>A</mi> </mrow> <mo stretchy="true">→</mo> </mover> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <mi>O</mi> <mi>B</mi> </mrow> <mo stretchy="true">→</mo> </mover> </mrow> </semantics> </math>, and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <mi>O</mi> <mi>C</mi> </mrow> <mo stretchy="true">→</mo> </mover> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <mi>O</mi> <mi>B</mi> </mrow> <mo stretchy="true">→</mo> </mover> </mrow> </semantics> </math>, namely, the <math display="inline"> <semantics> <mrow> <msub> <mi>y</mi> <mi>b</mi> </msub> </mrow> </semantics> </math>-axis, can be determined given <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>y</mi> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>f</mi> <mi>y</mi> </msub> </mrow> </semantics> </math>. Here, the <math display="inline"> <semantics> <mrow> <msub> <mi>y</mi> <mi>b</mi> </msub> </mrow> </semantics> </math>-axis is not usually in the <math display="inline"> <semantics> <mrow> <mi>O</mi> <mo>−</mo> <mi>y</mi> <mi>z</mi> </mrow> </semantics> </math> plane.</p> "> Figure 4
<p>The critical point for the intersection of the two conical surfaces, where <math display="inline"> <semantics> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>′</mo> </mrow> </semantics> </math> is the reflection of <math display="inline"> <semantics> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> about the <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mi>n</mi> </msub> </mrow> </semantics> </math>-axis and <math display="inline"> <semantics> <mrow> <mi>O</mi> <mi>C</mi> </mrow> </semantics> </math> is the reflection of <math display="inline"> <semantics> <mrow> <mi>O</mi> <mi>B</mi> </mrow> </semantics> </math> about the <math display="inline"> <semantics> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> </mrow> </semantics> </math>-axis.</p> "> Figure 5
<p>(<b>a</b>) The range of <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> as a function of <math display="inline"> <semantics> <mi>η</mi> </semantics> </math>, where the point <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>η</mi> <mo>,</mo> <mi>θ</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> must be within the rectangle; (<b>b</b>) The range of <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>α</mi> </msub> </mrow> </semantics> </math> as a function of <math display="inline"> <semantics> <mrow> <msub> <mi>f</mi> <mi>α</mi> </msub> </mrow> </semantics> </math>, where the point <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <msub> <mi>f</mi> <mi>α</mi> </msub> <mo>,</mo> <msub> <mi>w</mi> <mi>α</mi> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math> must be within the ellipse.</p> "> Figure 6
<p>Intersection with the plane normal to the <math display="inline"> <semantics> <mrow> <msub> <mi>α</mi> <mi>b</mi> </msub> </mrow> </semantics> </math>-axis and <math display="inline"> <semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>g</mi> </mstyle> <mo stretchy="false">(</mo> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi>w</mi> </mstyle> <mrow> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math>. The conical surfaces <math display="inline"> <semantics> <mrow> <mi>A</mi> <mi>O</mi> <msup> <mi>A</mi> <mo>′</mo> </msup> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>B</mi> <mi>O</mi> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>C</mi> <mi>O</mi> <msup> <mi>C</mi> <mo>′</mo> </msup> </mrow> </semantics> </math> are centered about <math display="inline"> <semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>g</mi> </mstyle> <mo stretchy="false">(</mo> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi>w</mi> </mstyle> <mrow> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math> and the points <math display="inline"> <semantics> <msup> <mi>M</mi> <mo>′</mo> </msup> </semantics> </math>, <math display="inline"> <semantics> <msup> <mi>N</mi> <mo>′</mo> </msup> </semantics> </math> are reflections of <math display="inline"> <semantics> <mi>M</mi> </semantics> </math>, <math display="inline"> <semantics> <mi>N</mi> </semantics> </math>, respectively, about <math display="inline"> <semantics> <mrow> <mstyle mathvariant="bold" mathsize="normal"> <mi>g</mi> </mstyle> <mo stretchy="false">(</mo> <msub> <mstyle mathvariant="bold" mathsize="normal"> <mi>w</mi> </mstyle> <mrow> <mi>i</mi> <mi>e</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Flowchart for the selective alignment algorithm.</p> "> Figure 8
<p>The alignment results using selective alignment for fault detection.</p> "> Figure 9
<p>The vehicular experiment scene and the related equipment.</p> "> Figure 10
<p>The errors of the attitude obtained using AA methods.</p> "> Figure 11
<p>The errors of the yaw angle obtained using AA methods.</p> ">
Abstract
:1. Introduction
2. Analytic Coarse Alignment
3. Selective Alignment
3.1. Derivation
1 | 2 | 3 | 4 | 5 | 6 | ||
---|---|---|---|---|---|---|---|
Output 1 | |||||||
Output 2 | |||||||
FWW | Output 3 | ||||||
FWF | Output 3 |
3.2. Choice of Solutions
Angular Velocity () | Specific Force () | |||||
---|---|---|---|---|---|---|
1 | −0.2550 | 0.6782 | 0.0824 | −3.1497 | 3.3518 | 8.6536 |
2 | 0.2550 | 0.6782 | 0.0824 | 7.6192 | 3.3518 | −5.1724 |
3 | 0.2550 | 0.6782 | 0.0824 | 3.1497 | 3.3518 | 8.6536 |
4 | −0.2550 | 0.6782 | 0.0824 | −7.6192 | 3.3518 | −5.1724 |
Original outputs | −0.2550 | 0.6782 | 0.0824 | −3.1497 | 3.3518 | 8.6536 |
- The signs of and
- The signs of and
- The approximate value of .
4. Exception in Selective Alignment
4.1. Nonzero Denominator
4.2. Nonnegative Radicand
4.3. Exception Handling in the Algorithm
- if
- if
- if there is no intersection with the -axis
- if in FWW, , or if in FWF,
- if in FWW, -axis, or if in FWF, -axis (The symbol “” denotes “approximate to”)
5. Simulations and Experiments
5.1. Static Alignment Example
Simulation conditions for the static alignment: |
, , , , |
, , |
, |
Roll () | Pitch () | Yaw () | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Selective Alignment | 9.9943 | 10.0058 | 9.9572 | 00000 | ||||||
9.9970 | 10.0910 | 9.9725 | 00000 | |||||||
9.9933 | 9.9732 | 9.9514 | 00000 | |||||||
9.9931 | 9.9664 | 9.9502 | 00000 | |||||||
9.9943 | 10.0058 | 9.7485 | 00000 | |||||||
10.4947 | 10.0058 | 9.7485 | 00000 | |||||||
9.9606 | 10.0058 | 9.7485 | 00000 | |||||||
9.9386 | 10.0058 | 9.7485 | 00000 | |||||||
9.9933 | 9.9732 | 9.8989 | 00000 | |||||||
10.0015 | 9.9649 | 9.9464 | 00000 | |||||||
9.9606 | 10.0058 | 9.7106 | 00000 | |||||||
9.9651 | 10.0013 | 9.7365 | 00000 | |||||||
Analytic Coarse Alignment | Equation (6a) | 9.9933 | 10.0058 | 9.9451 | - | |||||
Equation (6b) | 9.9933 | 10.0058 | 9.9445 | - | ||||||
True attitude | 10 | 10 | 10 | - |
Roll () | Pitch () | Yaw () | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Selective Alignment | −0.0058 | 0.0058 | 359.9588 | 00000 | ||||||
−0.0058 | 0.0715 | 359.9588 | 00000 | |||||||
−0.0058 | 0 | 359.9588 | 01000 | |||||||
−0.0058 | −0.0451 | 359.9588 | 00000 | |||||||
−0.0058 | 0.0058 | 0 | 00100 | |||||||
−0.0717 | 0.0058 | 0 | 00100 | |||||||
0 | 0.0058 | 0 | 01100 | |||||||
0 | 0.0058 | 0 | 01100 | |||||||
−0.0058 | −0.0447 | 7.3397 | 10101 | |||||||
0 | −0.0451 | 359.9552 | 00101 | |||||||
0.0447 | 0.0058 | 262.5998 | 10101 | |||||||
0 | −0.0451 | 0 | 01101 | |||||||
Analytic Coarse Alignment | Equation (6a) | −0.0058 | 0.0058 | 359.9588 | - | |||||
Equation (6b) | −0.0058 | 0.0058 | 359.9588 | - | ||||||
True attitude | 0 | 0 | 0 | - |
5.2. Fault Detection Example
Simulation conditions for fault detection: |
, , |
, , |
5.3. Self-Calibration Example
Simulation conditions for the self-calibration: |
, , |
, , |
Roll () | Pitch () | Yaw () | |||||||
---|---|---|---|---|---|---|---|---|---|
Selective Alignment | 19.9943 | 20.0061 | 19.5203 | ||||||
20.3557 | 22.5326 | 20.5163 | |||||||
19.9922 | 19.9900 | 19.5140 | |||||||
20.0003 | 20.0516 | 19.5379 | |||||||
19.9943 | 20.0061 | 18.5666 | |||||||
27.9823 | 20.0061 | 18.5666 | |||||||
19.9760 | 20.0061 | 18.5666 | |||||||
20.6650 | 20.0061 | 18.5666 | |||||||
19.9922 | 19.9900 | 19.8515 | |||||||
19.8948 | 20.0868 | 19.5674 | |||||||
19.9760 | 20.0061 | 19.8044 | |||||||
19.6457 | 20.3300 | 18.8464 | |||||||
Analytic Coarse Alignment | Equation (6a) | 19.9922 | 20.0061 | 19.4363 | |||||
Equation (6b) | 19.9922 | 20.0061 | 19.4388 | ||||||
True attitude | 20 | 20 | 20 |
5.4. Alignment in the Static Vehicle
Roll () | Pitch () | Yaw () | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Selective Alignment | 1 | −0.0744 | 1.6172 | 292.8975 | ||||||
2 | −0.0744 | 1.6537 | 292.8974 | |||||||
3 | −0.0744 | 1.7247 | 292.8973 | |||||||
4 | −0.0744 | 1.6760 | 292.8974 | |||||||
5 | −0.0744 | 1.6172 | 292.9183 | |||||||
6 | −0.0899 | 1.6172 | 292.9183 | |||||||
7 | −0.6041 | 1.6172 | 292.9183 | |||||||
8 | −0.0997 | 1.6172 | 292.9183 | |||||||
9 | −0.0744 | 1.7247 | 292.1757 | |||||||
10 | −0.0536 | 1.7255 | 292.8692 | |||||||
11 | −0.6041 | 1.6172 | 274.1607 | |||||||
12 | −0.0539 | 1.7255 | 292.8565 | |||||||
Analytic Coarse Alignment | 13 | Equation (6a) | −0.0744 | 1.6172 | 292.9162 | |||||
14 | Equation (6b) | −0.0744 | 1.6172 | 292.9145 | ||||||
True attitude | −0.0745 | 1.6173 | 292.9206 |
5.5. Alignment in the Vehicle with Vibration
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Britting, K.R. Inertial Navigation Systems Analysis; John Wiley & Sons: New York, NY, USA, 1971. [Google Scholar]
- Jiang, Y.F. Error analysis of analytic coarse alignment methods. Aerosp. Electron. Syst. Soc. 1998, 34, 334–337. [Google Scholar] [CrossRef]
- Zhao, H.; Shang, H.; Wang, Z.; Jiang, M. Comparison of initial alignment methods for sins. In Proceedings of the 9th World Congress on Intelligent Control and Automation (WCICA, 2011), Taipei, Taiwan, 21–25 June 2011; pp. 42–47.
- Li, J.; Fang, J.; Du, M. Error analysis and gyro-bias calibration of analytic coarse alignment for airborne POS. IEEE Instrum. Meas. Soc. 2012, 61, 3058–3064. [Google Scholar] [CrossRef]
- Harold, D.K.; Harold, D.K. A passive system for determining the attitude of a satellite. Aiaa J. 1963, 2, 1350–1351. [Google Scholar]
- Shuster, M.D.; OH, S.D. Three-axis attitude determination from vector observations. J. Guid. Control Dyn. 1981, 4, 70–77. [Google Scholar] [CrossRef]
- Silson, P.M. Coarse alignment of a ship’s strapdown inertial attitude reference system using velocity loci. IEEE Instrum. Meas. Soc. 2011, 60, 1930–1941. [Google Scholar] [CrossRef]
- Gu, D.; El-Sheimy, N.; Hassan, T.; Syed, Z. Coarse alignment for marine sins using gravity in the inertial frame as a reference. In Proceedings of the 2008 IEEE/ION on Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; pp. 961–965.
- Ali, J.; Ullah Baig Mirza, M.R. Initial orientation of inertial navigation system realized through nonlinear modeling and filtering. Measurement 2011, 44, 793–801. [Google Scholar] [CrossRef]
- Chang, L.; Hu, B.; Li, A.; Qin, F. Strapdown inertial navigation system alignment based on marginalised unscented kalman filter. IET Sci. Meas. Technol. 2013, 7, 128–138. [Google Scholar] [CrossRef]
- Sun, F.; Lan, H.; Yu, C.; El-Sheimy, N.; Zhou, G.; Cao, T.; Liu, H. A robust self-alignment method for ship’s strapdown ins under mooring conditions. Sensors 2013, 13, 8103–8139. [Google Scholar] [CrossRef] [PubMed]
- Ben, Y.; Li, Q.; Zhang, Y.; Huo, L. Time-varying gyrocompass alignment for fiber-optic-gyro inertial navigation system with large misalignment angle. Opt. Eng. 2014, 53. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Wang, L.; Liu, Y. A fast compass alignment method for sins based on saved data and repeated navigation solution. Measurement 2013, 46, 3836–3846. [Google Scholar] [CrossRef]
- Shuster, M.D. The optimization of triad. J. Astronaut. Sci. 2007, 55, 245–257. [Google Scholar] [CrossRef]
- Tan, C.; Wang, Y.; Zhu, X.; Su, Y.; Wei, G. Improved alignment method for a sins using two vector measurements. In Proceedings of the Fifth International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015. (accepted).
- Bar-Itzhack, I.Y.; Harman, R.R. Optimized triad algorithm for attitude determination. J. Guid. Control Dyn. 1997, 20, 208–211. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Zhu, X.; Su, Y.; Wang, Y.; Wu, Z.; Gu, D. A New Analytic Alignment Method for a SINS. Sensors 2015, 15, 27930-27953. https://doi.org/10.3390/s151127930
Tan C, Zhu X, Su Y, Wang Y, Wu Z, Gu D. A New Analytic Alignment Method for a SINS. Sensors. 2015; 15(11):27930-27953. https://doi.org/10.3390/s151127930
Chicago/Turabian StyleTan, Caiming, Xinhua Zhu, Yan Su, Yu Wang, Zhiqiang Wu, and Dongbing Gu. 2015. "A New Analytic Alignment Method for a SINS" Sensors 15, no. 11: 27930-27953. https://doi.org/10.3390/s151127930
APA StyleTan, C., Zhu, X., Su, Y., Wang, Y., Wu, Z., & Gu, D. (2015). A New Analytic Alignment Method for a SINS. Sensors, 15(11), 27930-27953. https://doi.org/10.3390/s151127930