Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section
<p>The schematic diagram of a typical Mach-Zehnder interferometer (MZI) sensor based on optical waveguide.</p> "> Figure 2
<p>The schematic diagram of sensitive region and sensitive layer at silicon-on-insulator (SOI) rib waveguide with large cross section. (<b>a</b>) Homogeneous sensing, the light olive region is the sensitive region; (<b>b</b>) Surface sensing, the blue region represents the sensitive layer, and its thickness is denoted by <span class="html-italic">t</span>.</p> "> Figure 3
<p>Dependence of the intensity of the evanescent field for homogeneous sensing on rib width (<span class="html-italic">w</span>) with different outside rib height (h). (<b>a</b>) HE polarization; (<b>b</b>) EH polarization.</p> "> Figure 4
<p>Simulation of the fundamental EH mode of the SOI rib waveguide with <span class="html-italic">H</span> = 10 μm, <span class="html-italic">h</span> = 5 μm, <span class="html-italic">w</span> = 2.5 μm at wavelength of 1550 nm, calculating with full-vector finite difference method (FDM).</p> "> Figure 5
<p>90° trench-based bend geometry of SOI rib waveguide with large cross section.</p> "> Figure 6
<p>T-shaped branch geometry of SOI rib waveguide with large cross section.</p> "> Figure 7
<p>The electric intensity map in a plane 4 μm above the SiO<sub>2</sub> layer for a 90° air-trench bend at a wavelength of 1550 nm. The SOI rib waveguide with a large cross section possesses a total rib height of 10 μm, an outside rib height of 5 μm, and a rib width of 2.5 μm. The guiding mode is the fundamental EH mode. The width and length of the air trench is 10 μm and 30 μm respectively, and the Goos-Hanchen shift compensation <span class="html-italic">D</span> = 0. Bend efficiency calculated through the 2D-FDTD simulation with mesh grid of 5 nm is 0.999746.</p> "> Figure 8
<p>The bend efficiency as a function of the Goos-Hanchen shift compensation (parameter <span class="html-italic">D</span>). There is an oscillatory variation, but the amplitude is very small.</p> "> Figure 9
<p>The local meshing in the 2D-FDTD simulation at the interface between air-trench and the bending waveguide. The mesh grid is 5 nm.</p> "> Figure 10
<p>The electric intensity map in a plane 4 μm above the SiO<sub>2</sub> layer for an asymmetric T-shaped air-trench branch at a wavelength of 1550 nm. The SOI rib waveguide with a large cross section possesses total rib height of 10 μm, outside rib height of 5 μm, and rib width of 2.5 μm. The guiding mode is the fundamental EH mode. The width and length of the air trench is 97 nm and 30 μm respectively.</p> "> Figure 11
<p>Splitting efficiency as a function of trench width. A 50%:50% splitting ratio is achieved with 96 nm air-trench width or 112 nm SU8-trench width.</p> "> Figure 12
<p>Splitter efficiency as a function of refractive index of trench. When the trench width is 0.12 μm, a 50%:50% splitting ratio is achieved with the refractive index of 1.76.</p> "> Figure 13
<p>Schematic of the MZI using media trenches based on SOI rib waveguide with large cross section.</p> "> Figure 14
<p>The optical power map of the MZI structure with the fundamental EH-polarized mode of an SOI rib waveguide with <span class="html-italic">H</span> = 10 μm, <span class="html-italic">h</span> = 5 μm, <span class="html-italic">w</span> = 2.5 μm at wavelength of 1550 nm. Because there is no phase difference between the sensing arm and the reference arm, only the port “output 1” has an output signal.</p> "> Figure 15
<p>The transmission of the electric field components in Z direction Ez (out of plane) of the MZI structure with EH-polarized mode of SOI rib waveguide with <span class="html-italic">H</span> = 10 μm, <span class="html-italic">h</span> = 5 μm, <span class="html-italic">w</span> = 2.5 μm at wavelength of 1550 nm.</p> "> Figure 16
<p>Normalized power of the SOI rib waveguide mode propagating along the sensing arm and the reference arm.</p> "> Figure 17
<p>The normalized output power in each output port as a function of the phase difference between the sensing arm and the reference arm.</p> "> Figure 18
<p>Schematic of the MZI sensing platform based on SOI rib waveguide with large cross section.</p> ">
Abstract
:1. Introduction
2. Principle of Operation
3. Section Dimensions of SOI Rib Waveguide
3.1. Intensity of Evanescent Field
3.2. Optimization of Waveguide Section Dimensions
4. MZI Structure Implementation
4.1. Conventional Implementations
Structure Type | Technology Platform | Technical Parameters & Requirements |
---|---|---|
Y-junction | Mode-matching | When d = 50 μm, 2θ = 0.4°, The minimum length of a single branch: L0 = 7.2 mm. |
S-bend splitter | Waveguide bending | When d = 50 μm, R > 0.26 m, The minimum length of a single branch: L0 = 5.1 mm. |
Multimode interference | Self-imaging effect [19] | When d = 50 μm, The minimum length of a single branch: L0 > 12 mm. |
4.2. Trench-Based Bend and Branch
4.3. Proposed MZI Structure
5. MZI Sensing Platform
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hong, J.; Choi, J.S.; Han, G.; Kang, J.K.; Kim, C.; Kim, T.S.; Yoon, D.S. A Mach-Zehnder interferometer based on silicon oxides for biosensor applications. Anal. Chim. Acta. 2006, 573–574, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, A.; Popat, K.C.; Aldridge, J.C.; Desai, T.A.; Hryniewicz, J.; Chbouki, N.; Little, B.E.; King, O.; Van, V.; Chu, S.; et al. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. 2006, 12, 148–155. [Google Scholar] [CrossRef]
- De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 2007, 15, 7610–7615. [Google Scholar]
- Claes, T.; Molera, J.G.; de Vos, K.; Schacht, E.; Baets, R.; Bienstman, P. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics J. 2009, 1, 197–204. [Google Scholar] [CrossRef]
- Qi, Z.; Matsuda, N.; Itoh, K.; Murabayashi, M.; Lavers, C.R. A design for improving the sensitivity of a Mach-Zehnder interferometer to chemical and biological measurands. Sens. Actuators B Chem. 2002, 81, 254–258. [Google Scholar] [CrossRef]
- Irawan, D.; Saktioto, T.; Ali, J.; Yupapin, P. Design of Mach-Zehnder interferometer and ring resonator for biochemical sensing. Photonics Sens. 2015, 5, 12–18. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta. 2008, 620, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tu, X.; Kim, K.W.; Kee, J.S.; Shin, Y.; Han, K.; Yoon, Y.; Lo, G.; Park, M.K. Highly sensitive Mach-Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sens. Actuators B Chem. 2013, 188, 681–688. [Google Scholar] [CrossRef]
- Densmore, A.; Xu, D.X.; Waldron, P.; Janz, S.; Cheben, P.; Lapointe, J.; Delâge, A.; Lamontagne, B.; Schmid, J.H.; Post, E. A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photonics Technol. Lett. 2006, 18, 2520–2522. [Google Scholar] [CrossRef]
- Densmore, A.; Xu, D.X.; Janz, S.; Waldron, P.; Mischki, T.; Lopinski, G.; Delâge, A.; Lapointe, J.; Cheben, P.; Schmid, J.H.; et al. Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Opt. Lett. 2008, 33, 596–598. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.A.; Gylfason, K.B.; Sanchez, B.; Griol, A.; Sohlstrom, H.; Holgado, M.; Casquel, R. Slot-waveguide biochemical sensor. Opt. Lett. 2007, 32, 3080–3082. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.A.; Banuls, M.J.; Gonzalez-Pedro, V.; Gylfason, K.B.; Sanchez, B.; Griol, A.; Maquieira, A.; Sohlstrom, H.; Holgado, M.; Casquel, R. Label-free optical biosensing with slot-waveguides. Opt. Lett. 2008, 33, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Soref, R.A.; Schmidtchen, J.; Petermann, K. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2. IEEE J. Quantum Electron. 1991, 27, 1971–1974. [Google Scholar] [CrossRef]
- Chao, C.; Fung, W.; Guo, L.J. Polymer microring resonators for biochemical sensing applications. IEEE J. Select. Top. Quantum Electron. 2006, 12, 134–142. [Google Scholar] [CrossRef]
- Dell'Olio, F.; Passaro, V.M. Optical sensing by optimized silicon slot waveguides. Opt. Express 2007, 15, 4977–4993. [Google Scholar] [CrossRef] [PubMed]
- Reed, G.T.; Knights, A.P. Silicon-On-Insulator (SOI) Photonics. In Silicon Photonics: An Introduction; John Wiley & Sons, Ltd.: Chichester, UK, 2004. [Google Scholar]
- Pogossian, S.P.; Vescan, L.; Vonsovici, A. The single-mode condition for semiconductor rib waveguides with large cross section. J. Lightwave Technol. 1998, 16, 1851–1853. [Google Scholar] [CrossRef]
- Zhu, Z.; Brown, T. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Express 2002, 10, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Yu, J.; Zhang, X.; Liu, Z. Compact 3-dB tapered multimode interference coupler in silicon-on-insulator. Opt. Express 2001, 26, 878–880. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Wang, W.H.; Li, T.; Wang, Y.L. Integrated waveguide turning mirror in silicon-on-insulator. IEEE Photonics Technol. Lett. 2002, 14, 68–70. [Google Scholar] [CrossRef]
- Lardenois, S.; Pascal, D.; Vivien, L.; Cassan, E.; Laval, S.; Orobtchouk, R.; Heitzmann, M.; Bouzaida, N.; Mollard, L. Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. Opt. Lett. 2003, 28, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Kiyat, I.; Aydinli, A.; Dagli, N. A compact silicon-on-insulator polarization splitter. IEEE Photonics Technol. Lett. 2005, 17, 100–102. [Google Scholar] [CrossRef]
- Qian, Y.; Kim, S.; Song, J.; Nordin, G.P.; Jiang, J. Compact and low loss silicon-on-insulator rib waveguide 90° bend. Opt. Express 2006, 14, 6020–6028. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Song, J.; Kim, S.; Nordin, G.P. Compact 90° trench-based splitter for silicon-on-insulator rib waveguides. Opt. Express 2007, 15, 16712–16718. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.T.; Ballantyne, J.M. Two-dimensional analysis of a dielectric waveguide mirror. J. Lightwave Technol. 1997, 15, 551–558. [Google Scholar] [CrossRef]
- Berenger, J. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Cai, J.; Nordin, G.P.; Kim, S.; Jiang, J. Three-dimensional analysis of a hybrid photonic crystal-conventional waveguide 90 degree bend. Appl. Opt. 2004, 43, 4244–4249. [Google Scholar] [CrossRef] [PubMed]
- Prieto, F.; Sepulveda, B.; Calle, A.; Llobera, A.; Domínguez, C.; Abad, A.; Montoya, A.; Lechuga, L.M. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 2003, 14. [Google Scholar] [CrossRef]
- Heideman, R.G.; Lambeck, P.V. Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens. Actuators B Chem. 1999, 61, 100–127. [Google Scholar] [CrossRef]
- Zinoviev, K.; Carrascosa, L.G.; Sánchez Del Río, J.; Sepúlveda, B.; Domínguez, C.; Lechuga, L.M. Silicon photonic biosensors for lab-on-a-chip applications. Adv. Opt. Technol. 2008, 2008, 1–6. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, D.; Dong, Y.; Liu, Y.; Li, T. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section. Sensors 2015, 15, 21500-21517. https://doi.org/10.3390/s150921500
Yuan D, Dong Y, Liu Y, Li T. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section. Sensors. 2015; 15(9):21500-21517. https://doi.org/10.3390/s150921500
Chicago/Turabian StyleYuan, Dengpeng, Ying Dong, Yujin Liu, and Tianjian Li. 2015. "Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section" Sensors 15, no. 9: 21500-21517. https://doi.org/10.3390/s150921500
APA StyleYuan, D., Dong, Y., Liu, Y., & Li, T. (2015). Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section. Sensors, 15(9), 21500-21517. https://doi.org/10.3390/s150921500