Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments
<p>Distribution of cities with more than 1 Million of inhabitants.</p> "> Figure 2
<p>Electric circuit of the sensor.</p> "> Figure 3
<p>Electric circuit of the sensor.</p> "> Figure 4
<p>Picture of the test bench for one of the measurements.</p> "> Figure 5
<p>Example of possible behaviors of different prototypes.</p> "> Figure 6
<p>Induced voltages for best frequencies of prototypes from 1 to 4 at test 1.</p> "> Figure 7
<p>Induced voltages for best frequencies of prototypes from 5 to 9 at test 2.</p> "> Figure 8
<p>Induced voltages for best frequencies of prototypes from 5′ to 9′ at test 3.</p> "> Figure 9
<p>Induced voltages for best frequencies of prototypes 3, 11, 12 and 14 at tests 4 and 5.</p> "> Figure 10
<p>Example of containers of water that accomplish the minimum cell volume (<b>A</b>) and do not accomplish it (<b>B</b>).</p> "> Figure 11
<p>Results of the first test to find out the minimum cell volume.</p> "> Figure 12
<p>Results of the second test to find out the minimum cell volume.</p> "> Figure 13
<p>Representation of data of calibration process.</p> ">
Abstract
:1. Introduction
Problem Formulation
Cities Population | Coastal | Inland | % Coastal |
---|---|---|---|
More than 5 M | 18 | 30 | 60 |
Between 1 M and 5 M | 87 | 226 | 38 |
Total population of these cities | 358,350,495 | 719,607,161 | 50 |
2. Related Work
2.1. Conductivity Studies in Groundwater
Ref. | Type of Study | Sampling Period | Number of Wells | Study Area (km2) | Country | EC/TDS | Conductivity Range (mS/cm) | Publish Year |
---|---|---|---|---|---|---|---|---|
[26] | Static | 1 Sampling period (2000/2001) | n/a | 500,000 | Korea | TDS | n/a | 2005 |
[37] | Static | 1 Sampling period (2001) | 18 | 1845 | Korea | Both | 0.114 to 25 | 2003 |
[30] | Static | 1 Sampling period (2009) | 79 | 35 | Italy | EC | 0.795 to 4.72 | 2012 |
[31] | Static | 1 Sampling period (2006) | 41 | 190 | Morocco | EC | 2.55 to 21 | 2009 |
[32] | Static | 3 Sampling period (2005/2006) | 8 | 750 | France | EC | 0.1 to 57.9 | 2008 |
[33] | Static | 1 Sampling period (2006) | n/a | n/a | Greece | EC | 0.5 to 24 | 2009 |
[29] | Static | 1 Sampling period (2001) | n/a | n/a | China | TDS | n/a | 2005 |
[35] | Static | 5 Sampling period (2007) | 55 | n/a | Turkey | EC | 0.1 to 42.8 | 2011 |
[36] | Static | 1 Sampling period (2000/2001) | 69 | n/a | Australia | EC | 12.7 to 17.3 | 2006 |
[38] | Dynamic | 1968 to 1995 | 35 | 1900 | Mexico | Both | 0.878 to 4.910 | 2004 |
[34] | Dynamic | 1984 to2000 | 4 | n/a | Turkey | EC | 0.807 to 0.924 | 2004 |
[27] | Dynamic | 1994 to 2004 | 26 | 1200 | Italy | TDS | n/a | 2011 |
[28] | Dynamic | 1960 to 2010 | n/a | 90,000 | U.S.A | TDS | n/a | 2014 |
[40] | Dynamic | 1996 to 2005 | 24 | 16,100 | Uzbekistan | Other | n/a | 2009 |
[39] | Dynamic | 1999 to 2001 | 40 | n/a | India | Both | 2.4 to 2.6 | 2008 |
2.2. Salinity Sensors
Methodology | Sensor Description | Measurable Range (mS/cm) | Match with Measurable Needs | Publication Year | Ref. | |
---|---|---|---|---|---|---|
Inductive | 2 Toroid | Same diameter | 1 to 44 | Possible | 2006 | [46] |
Same diameter (1.125 inch) | 3 to 48 | No (To High) | 2010 | [45] | ||
Same diameter (2.125 inch) | 0.45 to 3.4 | No (To Low) | ||||
Different diameter | 0.397 to 90.3 | Good | 2013 | [48] | ||
Other | 2 Solenoids | 0.397 to 90.2 | Good | |||
1 Toroid and 1 Solenoid | 0.397 to 90.4 | Good | ||||
1 Solenoid + sensor Hall | 0.0028 to 194 | Good | 2013 | [47] | ||
1 Toroid and 1 Solenoid | 0.397 to 76 | Good | 2013 | [49] | ||
Conductive | H-bridge and digital potentiometer | 15.6 to 53.9 | No (To High) | 2010 | [51] | |
4 Electrodes in a pipe | 0.5 to 6.5 | No (To Low) | 2008 | [52] | ||
Interdigitate electrodes | 4 Electrodes in a pipe | 0.007 to 0.32 | No (To Low) | 2002 | [53] | |
4 electrodes | 0.33 to 14.64 | No (To Low) | 2013 | [54] | ||
7 electrodes | 25 to 55 | No (To High) | 2011 | [55] | ||
4 models (40 and 63 electrodes) | 32 to 60 | No (To High) | 2011 | [56] | ||
Several electrodes | 0.12 to 12 | No (To Low) | 2014 | [57] |
2.3. Background Theory
3. Test Bench
3.1. Methodology
3.2. Electric Circuit
3.3. Electric Coils
Test | Prototype | Diameter of Wire (mm) | Diameter of Coils (mm) | Number of Windings of Powered Coil | Number of Windings Induced Coil | Windings Ratio |
---|---|---|---|---|---|---|
1 | 1 | 0.4 | 25 | 5 | 10 | 1:2 |
2 | 0.4 | 25 | 10 | 20 | 1:2 | |
3 | 0.4 | 25 | 20 | 40 | 1:2 | |
4 | 0.4 | 25 | 40 | 80 | 1:2 | |
2 | 5 | 0.4 | 25 | 30 | 15 | 1:0.5 |
6 | 0.4 | 25 | 30 | 30 | 1:1 | |
7 | 0.4 | 25 | 30 | 60 | 1:2 | |
8 | 0.4 | 25 | 30 | 90 | 1:3 | |
9 | 0.4 | 25 | 30 | 120 | 1:4 | |
3 | 5' | 0.4 | 25 | 15 | 30 | 1:2 |
6' | 0.4 | 25 | 30 | 30 | 1:1 | |
7' | 0.4 | 25 | 60 | 30 | 1:0.5 | |
8' | 0.4 | 25 | 90 | 30 | 1:0.3 | |
9' | 0.4 | 25 | 120 | 30 | 1:0.25 | |
4 | 3 | 0.4 | 25 | 20 | 40 | 1:2 |
10 | 0.6 | 25 | 20 | 40 | 1:2 | |
11 | 0.8 | 25 | 20 | 40 | 1:2 | |
5 | 12 | 0.4 | 15 | 40 | 20 | 1:2 |
3 | 0.4 | 25 | 20 | 40 | 1:2 | |
13 | 0.4 | 35 | 40 | 20 | 1:2 |
3.4. Preparation of Samples
4. Results and Discursion
4.1. Physical Characterization of the Sensor
- Firstly, we study the effect of changing the number of windings but maintaining the windings ratio between the induced and the powered coil. For this test bench, we used prototypes from 1 to 4.
- The second test studies the change produced in the sensor performance when the windings ratio changes but maintaining the number of windings in the powered coil. For this test, we used prototypes from 5 to 9.
- The third test changes the number of windings of the powered coil while maintaining the number of windings of the induced coil. For this test, we used again prototypes from 5 to 9 but changing the powered coil by the induced coil from the second test.
- Fourth test bench evaluates the effect of changing the diameter of copper wire using three different diameters of copper wire while keeping equal the rest of parameters (number of windings in the coils and coil diameter). Prototypes 3, 10 and 11 were used in this test.
- Finally, a fifth test bench is performed to check the effect of changing the coil diameter but maintaining the rest of parameters (wire diameter and number of windings). Prototypes used in this test were 3, 12 and 13.
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Freq. (kHz) | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 |
100 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x |
150 | x | |||||||||||||||||
200 | x | x | ||||||||||||||||
250 | x | x | x | x | x | x | x | x | ||||||||||
280 | x | |||||||||||||||||
300 | x | x | x | x | x | |||||||||||||
330 | x | |||||||||||||||||
350 | x | x | ||||||||||||||||
380 | x | |||||||||||||||||
400 | x | x | x | x | x | |||||||||||||
425 | ||||||||||||||||||
450 | x | x | x | |||||||||||||||
480 | ||||||||||||||||||
500 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||
550 | x | x | ||||||||||||||||
600 | x | x | x | x | x | |||||||||||||
620 | x | |||||||||||||||||
650 | x | x | ||||||||||||||||
700 | x | x | x | x | x | x | x | x | ||||||||||
750 | x | x | x | x | x | x | ||||||||||||
800 | x | x | x | x | x | x | x | |||||||||||
850 | ||||||||||||||||||
900 | x | x | x | x | x | x | x | x | ||||||||||
950 | x | |||||||||||||||||
1000 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |
1100 | x | x | x | x | x | x | x | x | x | |||||||||
1200 | x | |||||||||||||||||
1250 | x | x | x | x | x | x | x | |||||||||||
1300 | x | x | x | x | x | x | ||||||||||||
1400 | x | x | ||||||||||||||||
1500 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |
1600 | x | x | ||||||||||||||||
1700 | x | x | x | |||||||||||||||
1720 | x | |||||||||||||||||
1750 | x | x | ||||||||||||||||
1800 | x | x | x | |||||||||||||||
1840 | ||||||||||||||||||
1900 | x | x | x | |||||||||||||||
2000 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||
2250 | x | x | x | |||||||||||||||
2500 | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||
2600 | x | |||||||||||||||||
2700 | x | |||||||||||||||||
2750 | x | x | x | |||||||||||||||
2800 | x | x | ||||||||||||||||
3000 | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||
3500 | x | |||||||||||||||||
3753 | ||||||||||||||||||
4000 | x |
4.1.1. First Test: Changes in the Number of Spires Maintaining the Spires Relationship
4.1.2. Second and Third Test: Change the Spires Relation
4.1.3. Forth Test: Change the Wire Diameter
4.1.4. Fifth Test: Change the Coil Diameter
4.1.5. Summary of Tests for Physical Characterization of the Sensor and Election of Prototype
- A total of 13 different prototypes were tested, four of them with two different powered/induced coil configurations.
- Those 17 combinations of coils were powered at frequencies from 100 kHz to 4000 kHz.
- Each combination has one or more peaks of induction at different frequencies
- Generally, peaks of induction represent the frequency where the prototypes are be able to detect conductivity changes.
- From 17 different configurations, 14 of them are able to detect conductivity changes.
- The frequency at which the prototypes are able to determine the conductivity is shown in Table 6.
Prototype | Frequency (kHz) | Prototype | Frequency (kHz) | Prototype | Frequency (kHz) | Prototype | Frequency (kHz) |
---|---|---|---|---|---|---|---|
1 | 3753 | 6 | 1200 | 6′ | 1200 | 12 | 800 |
2 | 1840 | 8 | 800 | 8′ | 1600 | 13 | 900 |
3 | 800 | 9 | 600 | 9′ | 1200 | ||
4 | 425 | 5′ | 1000 | 11 | 600 |
Parameter | Prototype 4 | Prototype 11 |
---|---|---|
Coil diameter (mm) | 25 | 25 |
Copper wire diameter (mm) | 0.4 | 0.8 |
Spires in powered coil | 40 | 20 |
Spires in induced coil | 80 | 40 |
Volume of copper wire used (mm3) | 1184 | 2369 |
Price of copper for Prototype (€) | 0.42 | 0.85 |
4.2. Determination of Minimum Cell Volume
4.3. Calibration
Real Value (mS/cm) | IV (V) | Equation Value (mS/cm) | Relative Error (%) | Absolute Error (mS/cm) |
---|---|---|---|---|
1.72 | 0.59856 | 1.72 | 0% | 0.00 |
11.38 | 1.48608 | 11.37 | 0% | −0.01 |
26.7 | 2.064 | 28.73 | −8% | 2.03 |
45.3 | 2.3994 | 44.37 | 2% | −0.93 |
58.3 | 2.6832 | 59.74 | −2% | 1.44 |
Sensibility (mS/cm) | From (mS/cm) | To (mS/cm) |
---|---|---|
0.1 | 0.6 | 5.5 |
0.2 | 5.5 | 11.5 |
0.3 | 11.5 | 18 |
0.4 | 18.1 | 28 |
0.5 | 28.1 | 41 |
0.6 | 41.1 | 86.7 |
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Smart Cities. Available online: https://ec.europa.eu/digital-agenda/en/smart-cities (accessed on 23 February 2015).
- Lazaroiu, G.C.; Roscia, M. Definition methodology for the smart cities model. Energy 2012, 47, 326–332. [Google Scholar] [CrossRef]
- Kramers, A.; Höjer, M.; Lövehagen, N.; Wangel, J. Smart sustainable cities–Exploring ICT solutions for reduced energy use in cities. Environ. Model. Softw. 2014, 56, 52–62. [Google Scholar] [CrossRef]
- Kyriazis, D.; Varvarigou, T.; Rossi, A.; White, D.; Cooper, J. Sustainable smart city IoT applications: Heat and electricity management & Eco-conscious cruise control for public transportation. In Proceedings of the 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Madrid, Spain, 4–7 June 2013; pp. 1–5.
- Gabrielli, L.; Pizzichini, M.; Spinsante, S.; Squartini, S.; Gavazzi, R. Smart water grids for smart cities: A sustainable prototype demonstrator. In Proceedings of the 2014 European Conference on Networks and Communications (EuCNC), Bologna, Italy, 23–26 June 2014; pp. 1–5.
- Leccese, F. Remote-control system of high efficiency and intelligent street lighting using a ZigBee network of devices and sensors. IEEE Trans. Power Deliv. 2013, 28, 21–28. [Google Scholar] [CrossRef]
- Leccese, F.; Cagnetti, M. An Intelligent and High Efficiency Street Lighting System Isle based on Raspberry-Pi Card, ZigBee Sensor Network and Photovoltaic energy. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 274–285. [Google Scholar]
- Leccese, F.; Cagnetti, M.; Trinca, D. A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX. Sensors 2014, 14, 24408–24424. [Google Scholar] [CrossRef] [PubMed]
- Elejoste, P.; Angulo, I.; Perallos, A.; Chertudi, A.; García Zuazola, I.J.; Moreno, A.; Azpilicueta, L.; Astrain, J.J.; Falcone, F.; Villadangos, J. An easy to deploy street light control system based on wireless communication and LED technology. Sensors 2013, 13, 6492–6523. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban growth, climate change, and freshwater availability. Proc. Natl. Acad. Sci. 2011, 108, 6312–6317. [Google Scholar] [CrossRef] [PubMed]
- Nasirudin, M.A.; Za’bah, U.N.; Sidek, O. Fresh Water Real-Time Monitoring System Based on Wireless Sensor Network and GSM. In Proceedings of the 2011 IEEE Conference on Open Systems (ICOS2011), Langkawi, Malaysia, 25–28 September 2011; pp. 354–357.
- World Population Prospects. The 2010 Revision. Available online: http://esa.un.org/Wpp/Documentation/pdf/WPP2010_Volume-I_Comprehensive-Tables.pdf (accessed on 23 February 2015).
- The World’s Water. Available online: https://water.usgs.gov/edu/earthwherewater.html (accessed on 23 February 2015).
- Groundwater Use for America. Available online: http://www.ngwa.org/Documents/Awareness/usfactsheet.pdf (accessed on 23 February 2015).
- Owen, D. Taking Groundwater. Wash. Univ. Law Rev. 2013, 91, 253. [Google Scholar] [CrossRef]
- Anumalla, S.; Ramamurthy, B.; Gosselin, D.C.; Burbach, M. Ground water monitoring using smart sensors. In Proceedings of the 2005 IEEE International Conference on Electro Information Technology, University of Nebraska–Lincoln, Lincoln, NE, USA, 22–25 May 2005; pp. 1–6.
- Milnes, E. Process-based groundwater salinisation risk assessment methodology: Application to the Akrotiri aquifer (Southern Cyprus). J. Hydrol. 2011, 399, 29–47. [Google Scholar] [CrossRef]
- Chang, S.W.; Clement, T.P.; Simpson, M.J.; Lee, K.K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water Resour. 2011, 34, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Barron, O.V.; Barr, A.D.; Donn, M.J. Effect of urbanisation on the water balance of a catchment with shallow groundwater. J. Hydrol. 2013, 485, 162–176. [Google Scholar] [CrossRef]
- Hayashi, T.; Tokunaga, T.; Aichi, M.; Shimada, J.; Taniguchi, M. Effects of human activities and urbanization on groundwater environments: An example from the aquifer system of Tokyo and the surrounding area. Sci. Total Environ. 2009, 407, 3165–3172. [Google Scholar] [CrossRef] [PubMed]
- Padowski, J.C.; Gorelick, S.M. Global analysis of urban surface water supply vulnerability. Environ. Res. Lett. 2014, 9, 104004. [Google Scholar] [CrossRef]
- Intl ESRI Data. Available online: http://www.baruch.cuny.edu/geoportal/data/esri/esri_intl.htm#world (accessed on 15 February 2015).
- Foster, S.S.D. The interdependence of groundwater and urbanisation in rapidly developing cities. Urban Water 2001, 3, 185–192. [Google Scholar] [CrossRef]
- Bri, D.; Garcia, M.; Lloret, J.; Dini, P. Real deployments of wireless sensor networks. In Proceedings of the Third International Conference on Sensor Technologies and Applications 2009 (SENSORCOMM’09), Athens/Glyfada, Greece, 18–23 June 2009; pp. 415–423.
- Garcia, M.; Bri, D.; Sendra, D.; Lloret, J. Practical deployments of wireless sensor networks: A survey. Int. J. Adv. Netw. Serv. 2010, 3, 163–178. [Google Scholar]
- Park, S.C.; Yun, S.T.; Chae, G.T.; Yoo, I.S.; Shin, K.S.; Heo, C.H.; Lee, S.K. Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J. Hydrol. 2005, 313, 182–194. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Bellomo, S.; Bonfanti, P.; Brusca, L.; Longo, M. Salinity variations in the water resources fed by the Etnean volcanic aquifers (Sicily, Italy): Natural vs. anthropogenic causes. Environ. Monit. Assess. 2011, 173, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.; Ale, S. Long term (1960–2010) trends in groundwater contamination and salinization in the Ogallala aquifer in Texas. J. Hydrol. 2014, 513, 376–390. [Google Scholar] [CrossRef]
- Wen, X.; Wu, Y.; Su, J.; Zhang, Y.; Liu, F. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environ. Geol. 2005, 48, 665–675. [Google Scholar] [CrossRef]
- Ghiglieri, G.; Carletti, A.; Pittalis, D. Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). J. Hydrol. 2012, 432, 43–51. [Google Scholar] [CrossRef]
- El Yaouti, F.; El Mandour, A.; Khattach, D.; Benavente, J.; Kaufmann, O. Salinization processes in the unconfined aquifer of Bou-Areg (NE Morocco): A geostatistical, geochemical, and tomographic study. Appl. Geochem. 2009, 24, 16–31. [Google Scholar] [CrossRef]
- De Montety, V.; Radakovitch, O.; Vallet-Coulomb, C.; Blavoux, B.; Hermitte, D.; Valles, V. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhône delta (Southern France). Appl. Geochem. 2008, 23, 2337–2349. [Google Scholar] [CrossRef]
- Petalas, C.; Pisinaras, V.; Gemitzi, A.; Tsihrintzis, V.A.; Ouzounis, K. Current conditions of saltwater intrusion in the coastal Rhodope aquifer system, northeastern Greece. Desalination 2009, 237, 22–41. [Google Scholar] [CrossRef]
- Demirel, Z. The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey. J. Environ. Manag. 2004, 70, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Kaman, H.; Çetin, M.; Kirda, C. Monitoring and assessing of changes in soil and groundwater salinity of Yemisli Irrigation District of Turkey using low quality irrigation water. Sci. Res. Essays 2011, 6, 1388–1396. [Google Scholar]
- Bennetts, D.A.; Webb, J.A.; Stone, D.J.M.; Hill, D.M. Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J. Hydrol. 2006, 323, 178–192. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, K.S.; Koh, D.C.; Lee, D.H.; Lee, S.G.; Park, W.B.; Koh, G.W.; Woo, N.C. Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: A case study in Jeju volcanic island, Korea. J. Hydrol. 2003, 270, 282–294. [Google Scholar] [CrossRef]
- Cardona, A.; Carrillo-Rivera, J.J.; Huizar-Alvarez, R.; Graniel-Castro, E. Salinization in coastal aquifers of arid zones: An example from Santo Domingo, Baja California Sur, Mexico. Environ. Geol. 2004, 45, 350–366. [Google Scholar] [CrossRef]
- Rao, N.S. Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environ. Monit. Assess. 2008, 138, 327–341. [Google Scholar]
- Johansson, O.; Aimbetov, I.; Jarsjö, J. Variation of groundwater salinity in the partially irrigated Amudarya River delta, Uzbekistan. J. Mar. Syst. 2009, 76, 287–295. [Google Scholar] [CrossRef]
- Postolache, O.; Pereira, J.M.D.; Girão, P.S. Water Quality Monitoring and Associated Distributed Measurement Systems: An Overview; INTECH Open Access Publisher: Rijeka, Croatia, 2012. [Google Scholar]
- Zhao, Y.; Zhang, B.; Liao, Y. Experimental research and analysis of salinity measurement based on optical techniques. Sens. Actuators B Chem. 2003, 92, 331–336. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B. Experimental research of optical fiber sensor for salinity measurement. Sens. Actuators A Phys. 2012, 184, 53–56. [Google Scholar] [CrossRef]
- Guzman-Sepulveda, J.R.; Ruiz-Perez, V.I.; Torres-Cisneros, M.; Sanchez-Mondragon, J.J.; May-Arrioja, D.A. Fiber optic sensor for high-sensitivity salinity measurement. IEEE Photonics Technol. Lett. 2013, 25, 2323–2326. [Google Scholar] [CrossRef]
- Wood, R.T.; Bannazadeh, A.; Nguyen, N.Q.; Bushnell, L.G. A salinity sensor for long-term data collection in estuary studies. In Proceedings of the IEEE OCEANS, Sydney, Australia, 24–27 May 2010; pp. 1–6.
- Pham, T.T.; Green, T.; Chen, J.; Truong, P.; Vaidya, A.; Bushnell, L. A salinity sensor system for estuary studies. In Proceedings of the IEEE OCEANS 2008 Quebec, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–6.
- Parra, L.; Ortuño, V.; Sendra, S.; Lloret, J. Two New Sensors Based on the Changes of the Electromagnetic Field to Measure the Water Conductivity. In Proceedings of the Seventh International Conference on Sensor Technologies and Applications (SENSORCOMM 2013), Barcelona, Spain, 25–31 August 2013; pp. 266–272.
- Parra, L.; Ortuño, V.; Sendra, S.; Lloret, J. Water Conductivity Measurements Based on Electromagnetic Fields. In Proceedings of the First International Conference on Computational Science and Engineering (CSE’13), Valencia, Spain, 6–8 August 2013; pp. 139–144.
- Parra, L.; Ortuño, V.; Sendra, S.; Lloret, J. Low-Cost Conductivity Sensor Based on Two Coils. In Proceedings of the First International Conference on Computational Science and Engineering (CSE'13), Valencia, Spain, 6–8 August 2013; pp. 107–112.
- Striggow, K.; Dankert, R. The exact theory of inductive conductivity sensors for oceanographic application. IEEE J. Ocean. Eng. 1985, 10, 175–179. [Google Scholar] [CrossRef]
- Russ, S.H.; Perepa, V.; Leavesly, S.; Webb, B. Novel low-cost salinity sensor for embedded environmental monitoring. In Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), Concord, NC, USA, 18–21 March 2010; pp. 53–56.
- Ramos, P.M.; Pereira, J.D.; Ramos, H.M.G.; Ribeiro, A.L. A four-terminal water-quality-monitoring conductivity sensor. IEEE Trans. Instrum. Meas. 2008, 57, 577–583. [Google Scholar] [CrossRef]
- Laugere, F.; Lubking, G.W.; Bastemeijer, J.; Vellekoop, M.J. Design of an electronic interface for capacitively coupled four-electrode conductivity detection in capillary electrophoresis microchip. Sens. Actuators B Chem. 2002, 83, 104–108. [Google Scholar] [CrossRef]
- Kim, M.; Choi, W.; Lim, H.; Yang, S. Integrated microfluidic-based sensor module for real-time measurement of temperature, conductivity, and salinity to monitor reverse osmosis. Desalination 2013, 317, 166–174. [Google Scholar] [CrossRef]
- Huang, X.; Pascal, R.W.; Chamberlain, K.; Banks, C.J.; Mowlem, M.; Morgan, F. A miniature, high precision conductivity and temperature sensor system for ocean monitoring. IEEE Sens. J. 2011, 11, 3246–3252. [Google Scholar] [CrossRef]
- Herzog, G.; Moujahid, W.; Twomey, K.; Lyons, C.; Ogurtsov, V.I. On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 2013, 116, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Banna, M.H.; Najjaran, H.; Sadiq, R.; Imran, S.A.; Rodriguez, M.J.; Hoorfar, M. Miniaturized water quality monitoring pH and conductivity sensors. Sens. Actuators B Chem. 2014, 193, 434–441. [Google Scholar] [CrossRef]
- Eureqa Software. Available online: http://www.nutonian.com/products/eureqa/ (accessed on 9 August 2015).
- Sreekanth, J.; Datta, B. Design of an Optimal Compliance Monitoring Network and Feedback Information for Adaptive Management of Saltwater Intrusion in Coastal Aquifers. J. Water Resour. Plan. Manag. 2013, 140, 04014026. [Google Scholar] [CrossRef]
- El Mamoune, S.; Ezziyyani, M.; Lloret, J. Towards a New Approach for Modelling Interactive Real Time Systems Based on Collaborative Decisions Network. Netw. Protoc. Algorithms 2015, 7, 42–63. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, L.; Sendra, S.; Lloret, J.; Bosch, I. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments. Sensors 2015, 15, 20990-21015. https://doi.org/10.3390/s150920990
Parra L, Sendra S, Lloret J, Bosch I. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments. Sensors. 2015; 15(9):20990-21015. https://doi.org/10.3390/s150920990
Chicago/Turabian StyleParra, Lorena, Sandra Sendra, Jaime Lloret, and Ignacio Bosch. 2015. "Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments" Sensors 15, no. 9: 20990-21015. https://doi.org/10.3390/s150920990
APA StyleParra, L., Sendra, S., Lloret, J., & Bosch, I. (2015). Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments. Sensors, 15(9), 20990-21015. https://doi.org/10.3390/s150920990